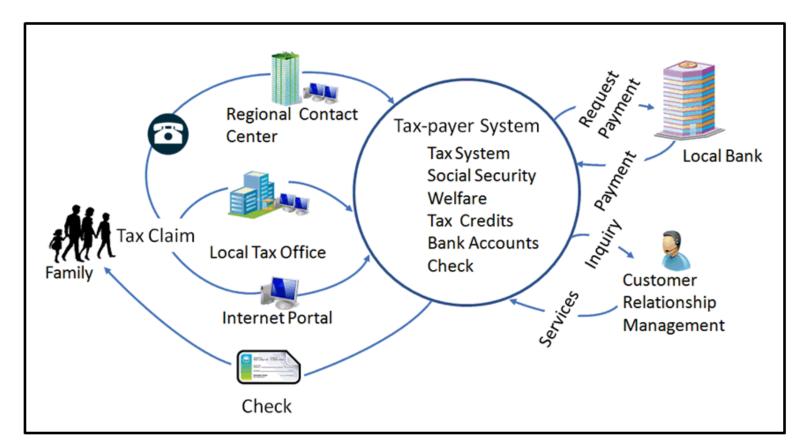
Confirming and Reconfirming Architectural Decisions: A Goal-oriented Simulation Approach

A Dissertation Presentation

By

Thomas L. Hill


Ph.D. Supervisory Committee

Dr. Lawrence Chung (Chair) Dr. Farokh Bastani Dr. Kang Zhang Dr. Latifur Khan Dr. Eric Wong

Outline

- Motivation
- Research Problem
- Related Work
- The Proposed Solution
 - GoBench
 - GoSim
- Case Studies
- Conclusion

"Evaluate a poor performing complex national tax system"

- Software is functionally sound
- Architecture fails the goals of users due to:
 - Poor performance

3

- Unexpected development and maintenance cost
- Engineers unable to predict or confirm architecture behavior

Motivation

- The architecture evaluation points of interest:
 - Design was not confirmed or reconfirmed via analysis, benchmarking, simulation or volume testing
 - Design confirmed when system placed into production
 - Non-functional requirements defined in a 200 page service level agreement
 - The behavior of the system was too complex to understand or maintain
 - The application workload was not documented or matched to the performance characteristics of the run-time infrastructure

Outline

- Motivation
- Research Problem
- Related Work
- The Proposed Solution
 - GoBench
 - GoSim
- Case Studies
- Conclusion

Research Problem

- Today's software engineers are unable to assess or predict a system-architecture's ability to satisfy stakeholder performance and cost goals, in a fast and inexpensive manner.
- The tools required to quickly understand, assess and predict the behavior of complex cloud architectures are disconnected and in a nascent stage of usage by industry software engineers.

Research Problem - Specific

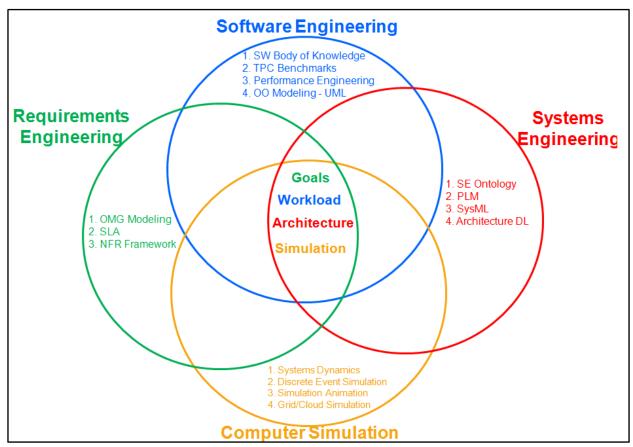
- Several unanswered questions remain as obstacles in the path to understand the behavior of these modern systems:
 - 1. Why are stakeholder NFR-goals expressed as natural language contract-binding service level agreements?
 - 2. Where are the online transaction processing (OLTP) benchmarks results for cloud architectures?
 - 3. How can the limits of cloud architecture resource elasticity be discovered?
 - 4. Why is it so difficult to describe a discrete event simulation model experiment?
 - 5. What basic software engineering artifacts and tools are needed to understand the behavior of a complex enterprise-level system throughout its development and operational life?

Research Goal and Approach

Research Goal: This research seeks to make a difference throughout the software development and maintenance lifecycle by using benchmarking and new discrete event simulation modeling techniques to integrate: NFR goals, workload and architecture infrastructure.

Approach:

8


- Build on NFR goal graphical representations as softgoals
- Use standard benchmarking to specify performance goals, requirements, database definitions and transaction workload characteristics
- Generate multiple benchmark experiments to collect actual performance and resource usage of multiple architectures
- Use multiple open source discrete event simulators to model the benchmarked performance goals, requirements, database definitions and transaction workload characteristics
- Compare benchmark results to simulation results to authenticate the fidelity of simulation as an architecture reconfirming tool

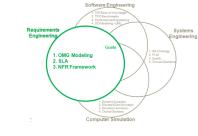
Outline

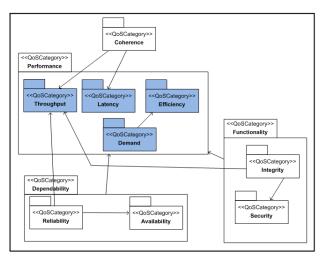
- Motivation
- Research Problem
- Related Work
- The Proposed Solution
 - GoBench
 - GoSim
- Case Studies
- Conclusion

Related Work

- Intersection of four evolving engineering domains:
 - Requirements Engineering
 - Software Engineering
 - Systems Engineering
 - Computer Simulation

Related Work Requirements Engineering


UML Profile for Modeling QoS [OMG06]

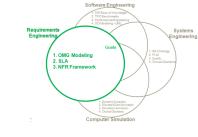

+ UML extension specifications through stereotypes

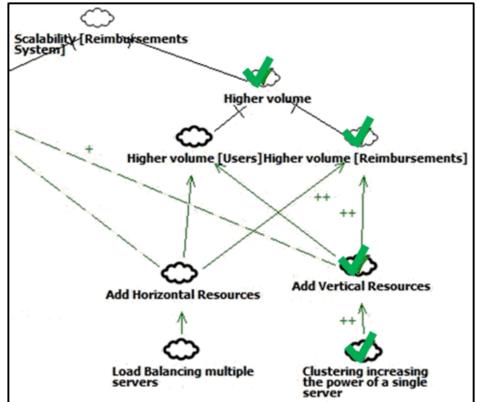
+ System concerns: User satisfaction and resource consumption

+ Categories (performance, dependability, security, integrity, coherence, throughput, latency, efficiency, demand, reliability, availability)

- Definitions only; system goals, design, implementation missing

Service Level Agreements and Monitoring [EDS/HP10]

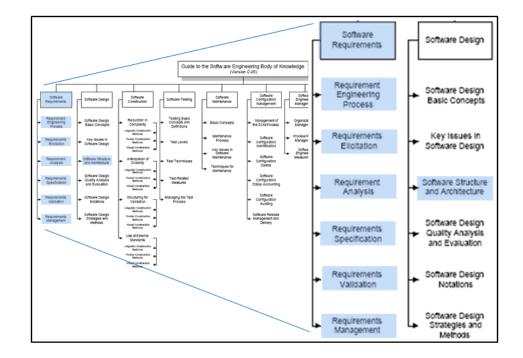

Topology Map			5 V 6 2
Advantage_Inc	- B 🖸 O 🛠 🖬 🗞 Depte	y options - Layers mode - 🛛 🖸 🗘 + 💥 💷 💱	* *
Business Enablement	Research Service	Containment	Containment
8 8	logent S S S 20 S 20	Colline Banking Sension	Anazza Szervize 66 % 66 66 % 63
Application and Service	se congelement Congelement	Containment	Anazan App

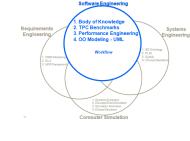

- + Service Level Agreement (SLA) is a contracted system performance goal
 + SLA components (what provider promises, how delivered, who will measure, what penalties provider will pay)
- + HP Transaction Summary monitoring display
- Not traceable to system design requirements

Related Work Requirements Engineering

NFR Framework - Goals

- a. NFR in Software Engineering [CNYM00]
- b. Confirming and Reconfirming Architectural Decisions on Scalability: A Goal-Driven Simulation Approach [HSC09]
- + Non-functional requirements represented as softgoals (Softgoal Interdependency Graph)
- + Goal oriented analysis, document decisions rationale
- + Simulation to assist making architecture decisions
- No integration of goals, transaction flow and architecture
- Only scalability goal researched

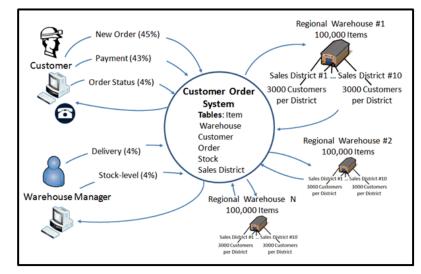


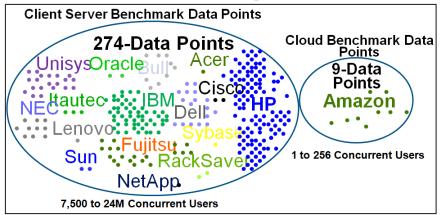


Related Work Software Engineering

Software Engineering Body of Knowledge [IEEE04]

- + Computer scientists extend knowledge, software engineers build artifacts
- + 10 key knowledge areas 14 deep (requirements to quality)
- Concerned with process and lifecycle; goals not mentioned




Related Work Software Engineering

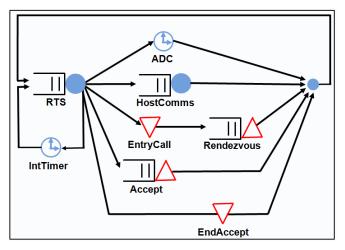
Transaction Processing Benchmarks [TPC-C11]

- + Standard objective verifiable performance and cost OLTP, RDB since 1992
 + Business throughput metrics; number of orders processed per minute with cost
- OLTP and relational database only
- High cost to benchmark, high cost to customize

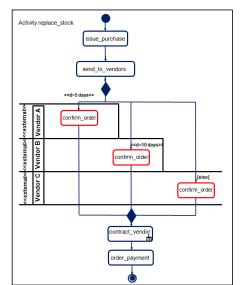
Transaction Processing Council Benchmarks [TPC-C13]

+ 274 client server benchmarks documented
+ 9 cloud benchmarks using Amazon cloud
created by Stony Brook University

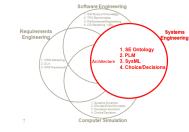
 No cloud benchmarks for Google, Microsoft, HP


Software Performance Engineering [Smith93]

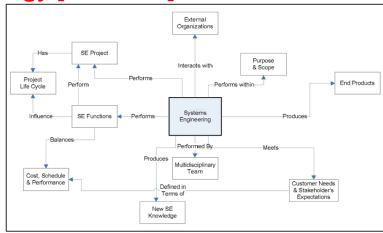
+ Analysis strategies (adapt-to-precision, simple-torealistic, best-and-worst-case)


+ SPE data (performance requirements, behavior patterns, software description, execution environment, resource usage estimates)

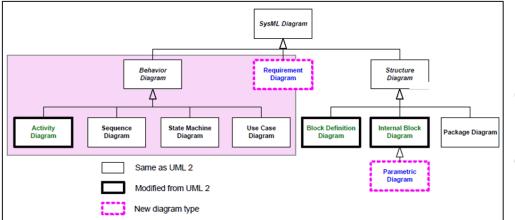
- Petri net model analysis training needed


Extending and Formalizing UML 2.0 Activity Diagrams ... [Chung10]

+ UML Activity diagrams can be used to document the workflow of business and computer functions

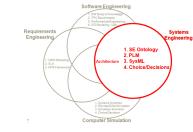

 Need to extend overlay of goals on workflows and architecture

Related Work Systems Engineering

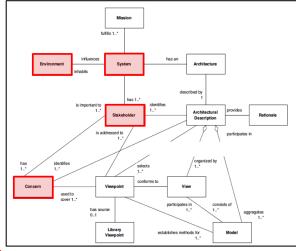


Developing Systems Engineering Ontology [Sarder07]

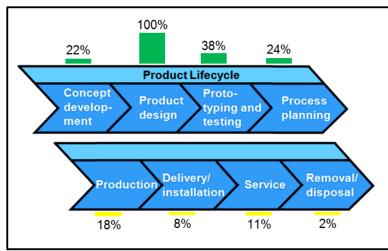
- + Taxonomy of systems engineering functions
- + Top level systems engineering ontology
- Only high-level definitions provided
- Early stage, design not complete



SysML/UML 2 Behavior Diagrams – Systems Engineering Handbook [INCOSE11]


- + SE lifecycle detail definition
- + Practice of architecture design (SysML-OMG-INCOSE, DODAF, MODAF)
- + Modeling, simulation, prototyping defined
- Little mention of goal-orientation

Related Work Systems Engineering



ISO/IEC 42010 Systems and Software Engineering – Recommended Practice for Architecture Description of Software-intensive Systems [IEEE07]

- + Expression and communication of architecture
- + Conceptual model of an Architectural Description (AD)
- Deals with what, no elaboration of how to develop an AD
- No mention of how to analyze an AD

PLM-CAD/CAM, BoM, Simulation [Siemens11]

- + UGS product lifecycle visualization Teamcenter digital prototyping and plant simulation
- + Lifecycle concept-development to removaldisposal
- + CAD, CAE, CAM, Digital Manufacturing, FEA, PDM
- Expensive overkill for modeling information technology systems

Related Work Computer Simulation

System Dynamics - Industrial Dynamics [Forrester61]

+ The noteworthy beginnings of management as a science and systems dynamics

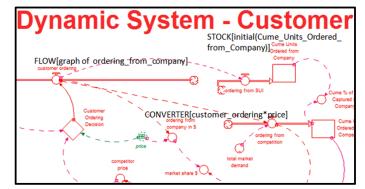
+ Building experimental models of companies and industries – DYNAMO compiler

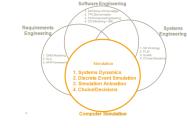
+ Stock and flow simulation predecessor

Discrete Event Simulation M/M/1 Algorithm

- No integration of goals, workflow and infrastructure

Discrete Event Simulation – Simulation Modeling and Analysis [Law91]

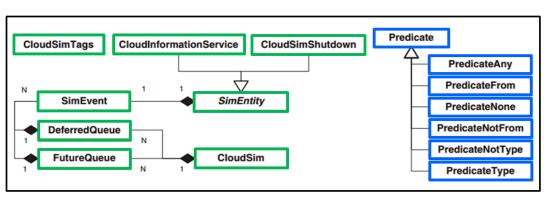

- [1 p	ro	cedure mm1 (Compressed from mm1.c, Law91)
	2 lr	npu	t: meanInterarrivalTime seconds and meanServiceTime seconds
	3 0	Dut	out: performance metrics; average delay in queue, average number in queue, server utilization
	4 Ir	hitia	alize simClock =0, nextEvent = simClock + exponentialFunction(meanInterarrivalTime)
	5 v	/hi	le endCondition false do
	6	E	Determine nextEventType
	7	i	if eventList <i>empty</i> then
	8		endCondition = true
	9		end
	10		Advance simulation clock simClock = minimumTimeNextEvent
	11	A	ccumulate performance metrics
	12	if	inextEventType arrival then
	13		Schedule next arrival nextEvent = simClock + exponentialFunction(meanInterarrivalTime)
	14		if serverBusy then
	15		Accumulate performance metrics
	16		else
	17		Schedule a departure nextEvent = simClock + exponentialFunction(meanServiceTime)
	18		end
	19	e	Ise nextEventType is <i>depart</i>
	20		if queueEmpty then
	21		serverBusy = false
	22		else
	23		Schedule a departure nextEvent = simClock + exponentialFunction(meanServiceTime)
	24		end
	25	e	nd
	26 (enc	1
	27	Pro	duce performance metrics report

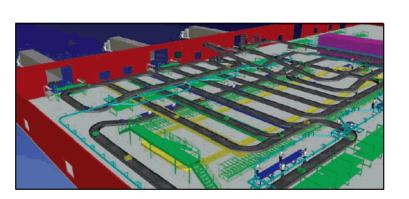

+ The teaching "Bible" of Discrete Event Simulation (DES) since 1982

+ Basic components of DES model of a system that changes over time (state, clock, event list, timer)

+ Simple modeling icons and simulation program samples in Fortran and C

- No integration of goals, workflow and infrastructure

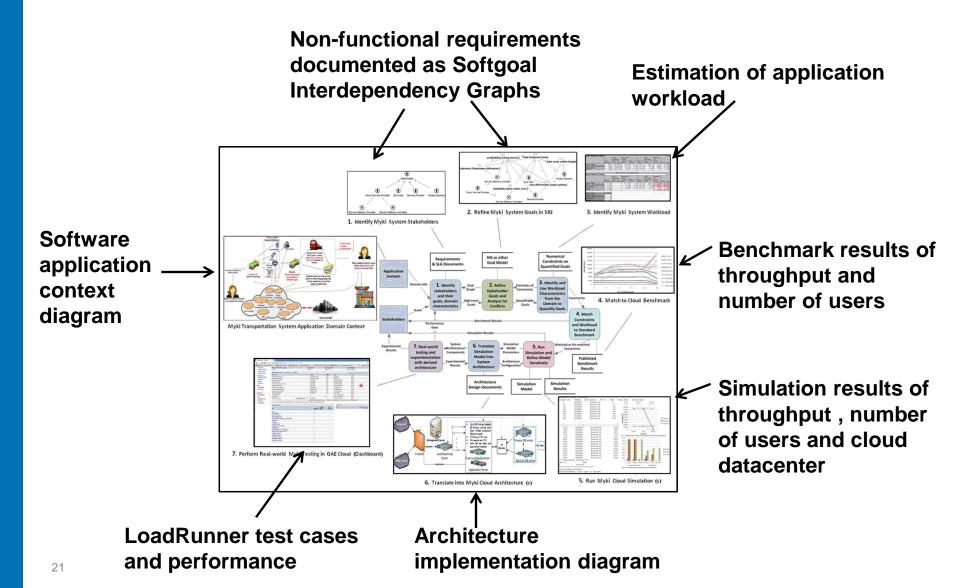

Related Work Computer Simulation


Simulation animation [Siemens10]

- + Uses 3D CAD structures to visualize and animate plant flow
- + Operations animation to visualize performance
- + Communicate design alternatives to management
- Costly for IT systems

CloudSim: a toolkit for modeling and simulation of cloud computing environments .. [Calheiros10]

- + Derived from an operational grid simulator
- + Simulates using cloud components (datacenter, brokers, host, broker, VM, Cloudlets)
- No goal properties are considered
- Java used to modify workload and infrastructure variables

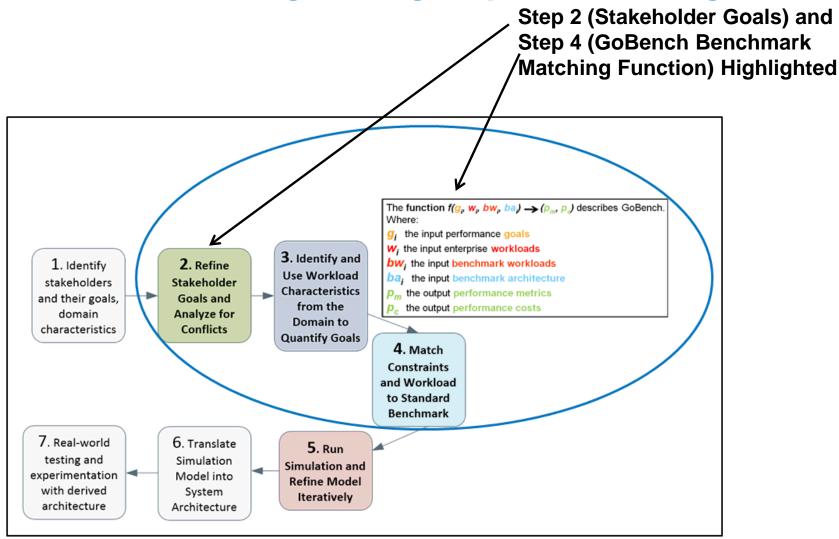


Outline

- Motivation
- Research Problem
- Related Work
- The Proposed Solution
 - GoBench
 - GoSim
- Case Studies
- Conclusion

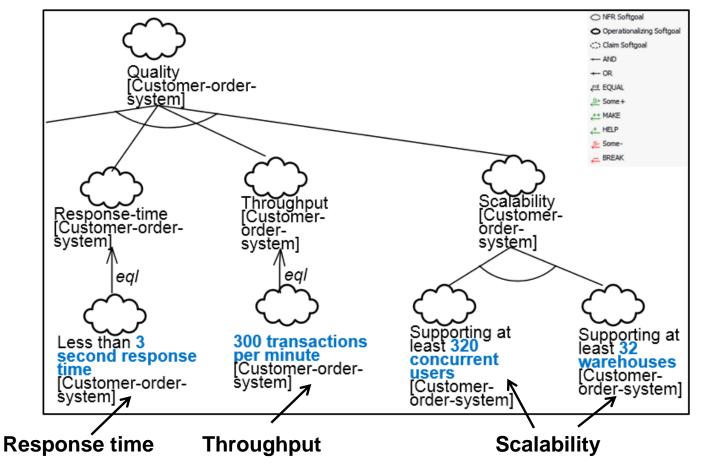
Software Engineering Framework

GoBench GoSim Framework Steps Annotated with Artifacts

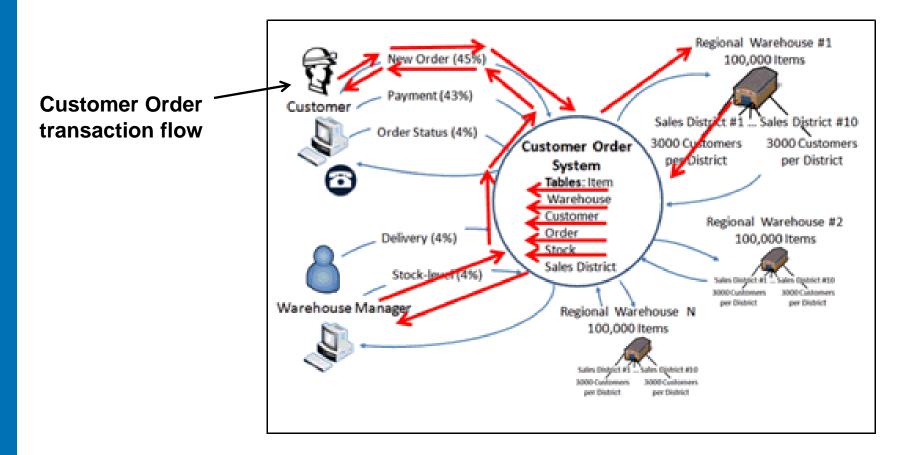


Outline

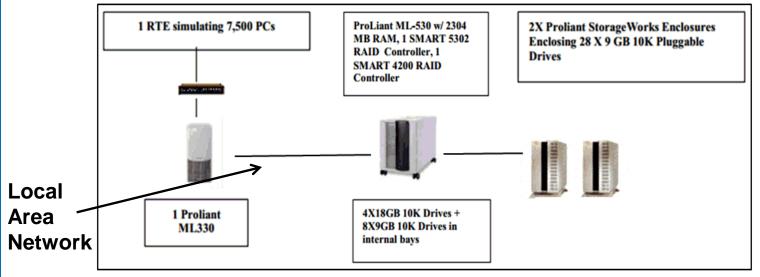
- Motivation
- Research Problem
- Related Work
- The Proposed Solution
 - GoBench
 - GoSim
- Case Studies
- Conclusion


GoBench Software Engineering Framework

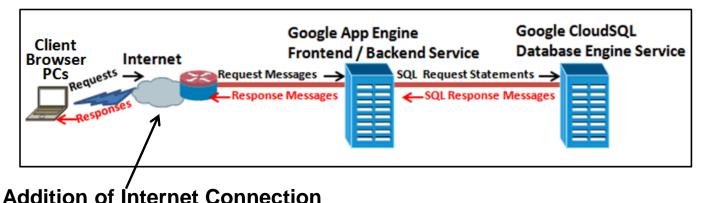
Seven Software Engineering Steps - Confirming


GoBench Softgoal Interdependency Graph

Step 2 Non-Functional Requirements Performance Goals

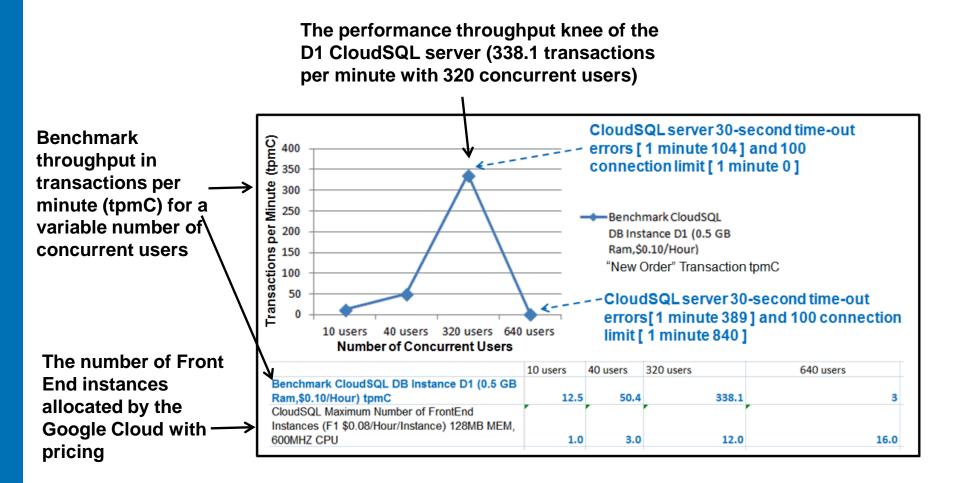

GoBench TPC-C Benchmark Context

Step 4 Benchmark Application Workload and Flow

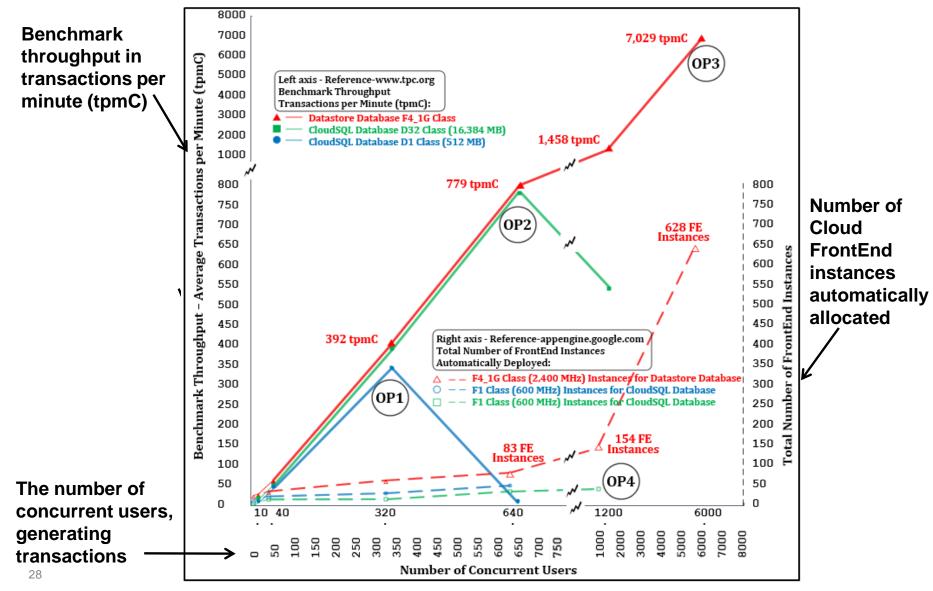


GoBench TPC-C Benchmark Architectures

Step 4 Benchmark Client Server Architecture


Step 4 Benchmark Cloud Services Architecture

26


GoBench TPC-C Benchmark Results

Step 4 Google Cloud Results for a D1 CloudSQL Database Instance

GoBench TPC-C Benchmark(s) Results

Step 4 Google Cloud Results for 15 Benchmark Experiments

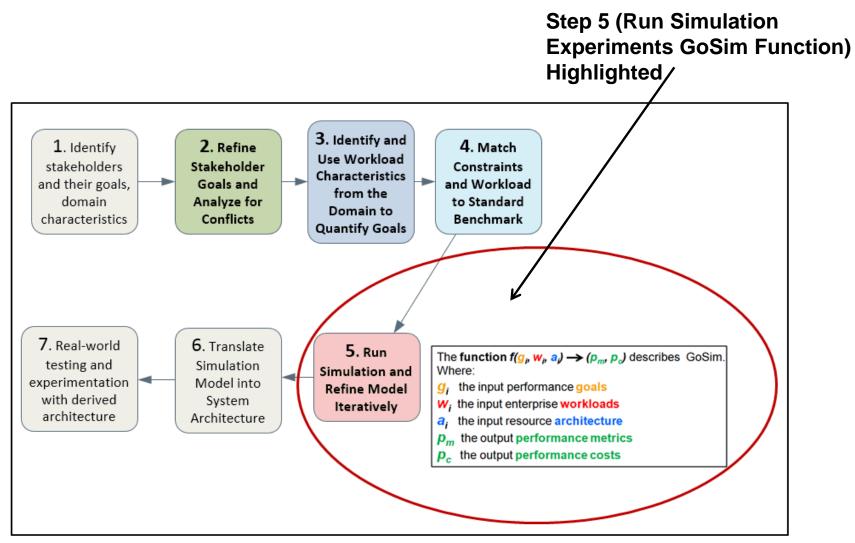
GoBench TPC-C Benchmark(s) Results

Step 4 Google Cloud Results for 16 Benchmark Experiments Table

Additional experiment with 640 users, CloudSQL mid-

power instance D16

				\mathbf{h}		
[10 users	40 users	320 users	640 useks	1,200 users	6,000 users
CloudSQL DB Instance D1 (0.5 GB	20 03013	to users		one users	1,200 05015	0,000 03213
Ram,\$0.10/Hour) tpmC	12.5	50.4	338.1	3		
CloudSQL DB Instance D16 (8 GB Ram,\$1.54/Hour) tpmC				760.4		
CloudSQL DB Instance D32 (16 GB						
Ram,\$3.08/Hour) tpmC	12.5	50.4	374.6	769.5	557.8	
Datastore F4_1G (2400MHZ,1024MB) tpmC	12.0	49.1	392.3	778.7	1,458.1	7,028.7
Maximum Benchmark tpmC	12.9	51.4	411.5	823.0	1,543.2	7,716.0
CloudSQL Maximum Number of FrontEnd Instances (F1 \$0.08/Hour/Instance)	1.0	3.0	12.0/6.0	16.0/13.0/12. 0	32.0	
Datastore Maximum Number of FrontEnd Instances (F4 1G \$0.48/Hour/Instance)	5.0	8.0		83.0	154.0	628.0
		0.0		03.0	104.0	020.0
Number Warehouses	1	4	32	64	120	600
CloudSQL-Database Size Gbytes (\$0.24/GB/Mo)	0.2	0.5	3.3	5.7	9.9	
Datastore - Database Size Gbytes (\$0.18/GB/Mo)	2.0	7.5	47.5	116.8	228.1	1,368.2


Maximum transactions per minute (tpmC) based on benchmark-required transaction keying time and think time.

Outline

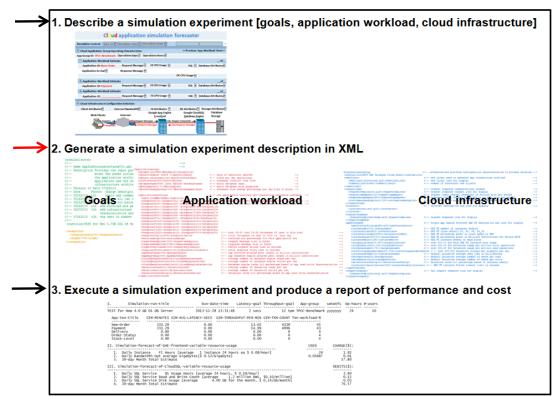
- Motivation
- Research Problem
- Related Work
- The Proposed Solution
 - GoBench
 - GoSim
- Case Studies
- Conclusion

GoSim Software Engineering Framework

Seven Software Engineering Steps - Reconfirming

GoSim Simulation Model Three-step Process

Why Build Simulation Models?


- 1. Understand the behavior of a complex system by describing the system, without constructing it
- 2. Eliminates the time and expense required to design, code and test software and build-out the hardware/software infrastructure

Simulation Three-steps (Describe Experiment, Generate, Execute):

Graphic User Interface used to design the simulation experiment; by describing: goals, application workload and the components of the infrastructure

The GUI generates the description of the simulation experiment in XML

XML is used as input to a discrete event simulator to produce a report of performance (throughput) and cost

GoSim Describe A Simulation Experiment

Graphical User Interface Design to Describe:

- **1. Performance Goals**
- 2. Workload
- 3. Architecture Infrastructure

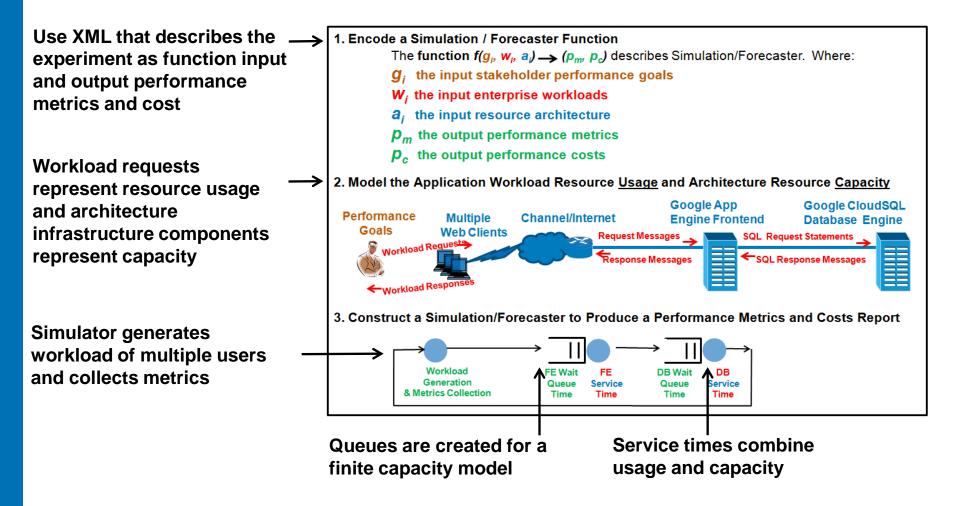
	Cloud	application s	simulation	forecaster	
Performance goals>	Simulation Control: Save As	Simulation Start 💽 Simu	ulation Goals 💌		0
r chormanoc goals	+ Cloud Application Group Ope	rating Characteristics		<< Previous App-W	orkload Next>>
	App Group ID: TPCC-Benchmark	Operations Days Operations	rations Hours 💌		
	- Application Workload Estim	ate			of
	Application ID: New-Order	Request Message 💌	FE CPU Usage 💌	SQL 💌 Datab	ase Attributes 💌
	Application Arrival	Response Message 💌			
				DE CPU Usage 💌	
Application workload	+ Application Workload Estim	ate			of
	Application ID: Payment	Request Message 💌	FE CPU Usage 💌	SQL 💌 Datab	ase Attributes 🔻
	+ Application Workload Estim	ate			of
	Application ID:	Request Message 💌	FE CPU Usage 💌	SQL 💌 Datab	ase Attributes 🔻
	+ Cloud Infrastructure Configur	ation Selection			
Architecture infrastructure>	Client Attributes Ir	iternet Bandwidth	FE Attributes 💌		rage Attributes
	Web Clients	Internet	Google App Engine <u>F</u> ront <u>E</u> nd	Google CloudSQL <u>D</u> atabase <u>E</u> ngine	Database Storage
	Requests	Request Mess		quest Statements	

³³ Generate XML to describe the complete simulation experiment

GoSim Describe A Simulation Experiment

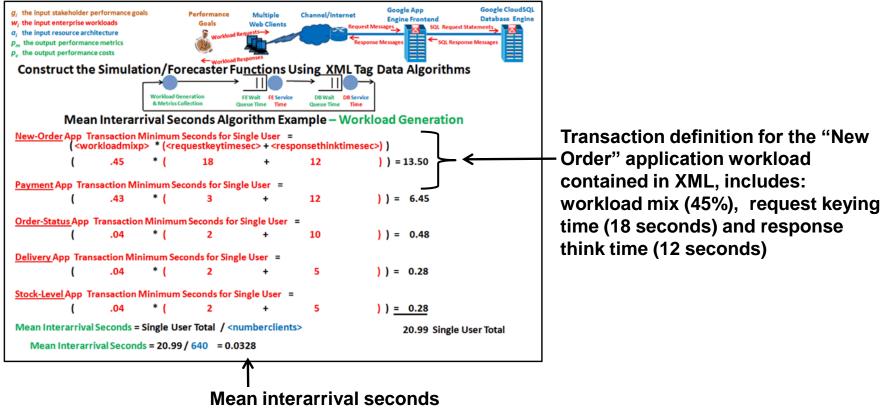
XML Design to Describe:

- **1. Performance Goals**
- 2. Workload
- 3. Architectur


Performance goals

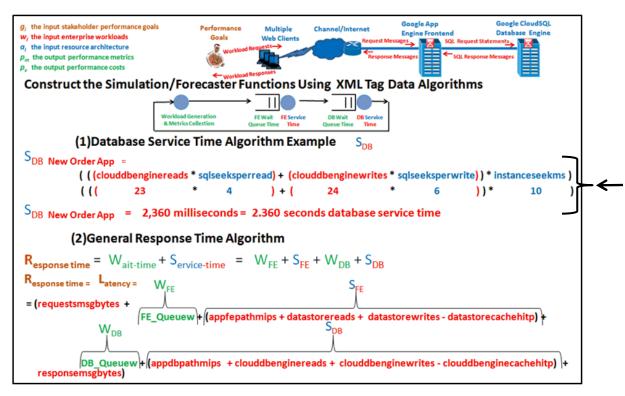
Application workload —

Architecture Infrastructure rastructureconfig> <i characteristics="" configuration="" infrastructure="" platform="" process="" to="" workload<br=""><configtitle>OLTP Web Database Cloud Model</configtitle> <webclient> <i app="" client="" generate="" to="" transactionw="" used="" web="" workload=""></i></webclient></i>
rastructureconfig> <i characteristics="" configuration="" infrastructure="" platform="" process="" to="" workload<br=""><configtitle>OLTP Web Database Cloud Model</configtitle> <webclient> <i app="" client="" generate="" to="" transactionw="" used="" web="" workload=""></i></webclient></i>
<pre><webclienticon>wcicon.gif</webclienticon> webclienticon>wcicon.gif </pre>

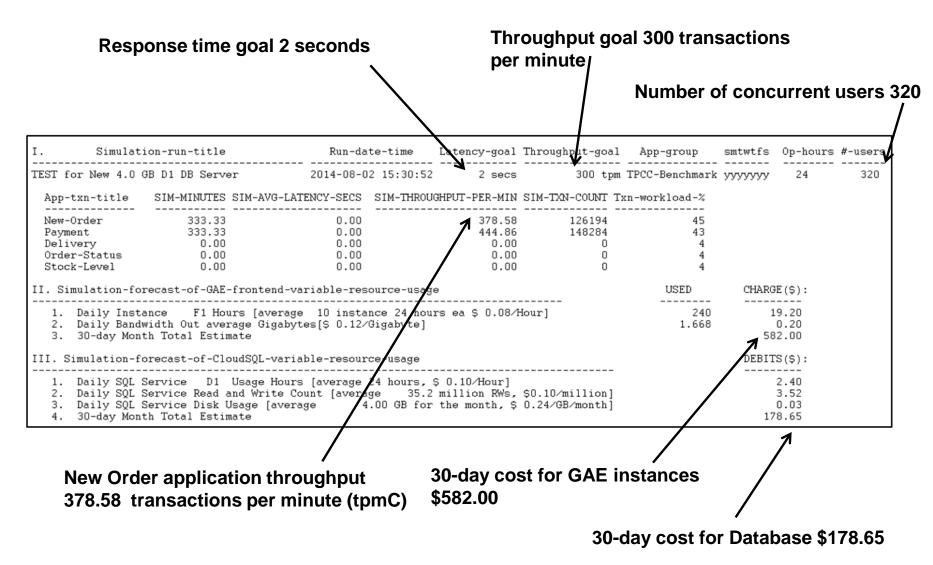

GoSim Execute Simulation Forecaster

Google Cloud Project Simulation Forecaster Function Design

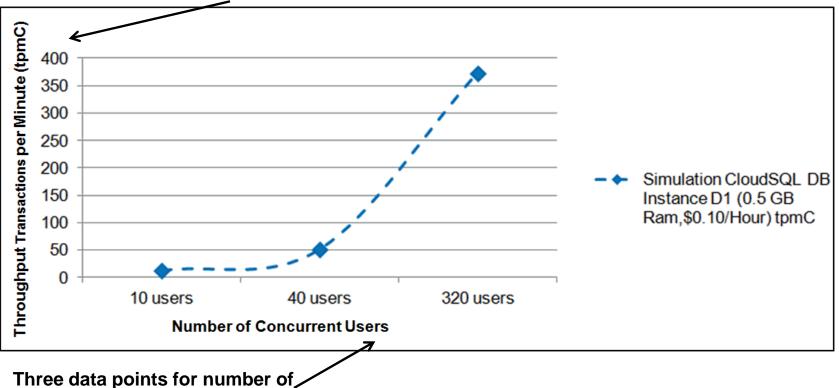
GoSim Execute Simulation Forecaster


Google Cloud Project Simulation Forecaster Mean Interarrival Algorithm Example

for 640 users


GoSim Execute Simulation Forecaster

Google Cloud Project Simulation Forecaster Mean Database Service Time Algorithm Example

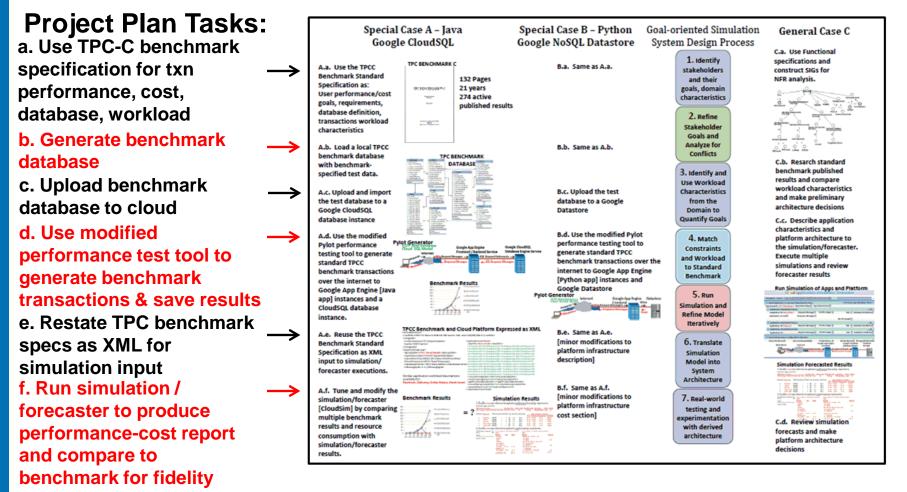

"New Order" application workload combined with cloud capacity, defined in XML, includes: mean number of cloud database read operations (23), mean number of SQL seek operations per read (4), mean number of cloud database write operations (24), mean number of SQL seek operations per write (6) and the mean seek time (10 milliseconds)

GoSim Simulation Forecaster Report

GoSim Throughput Simulation Results

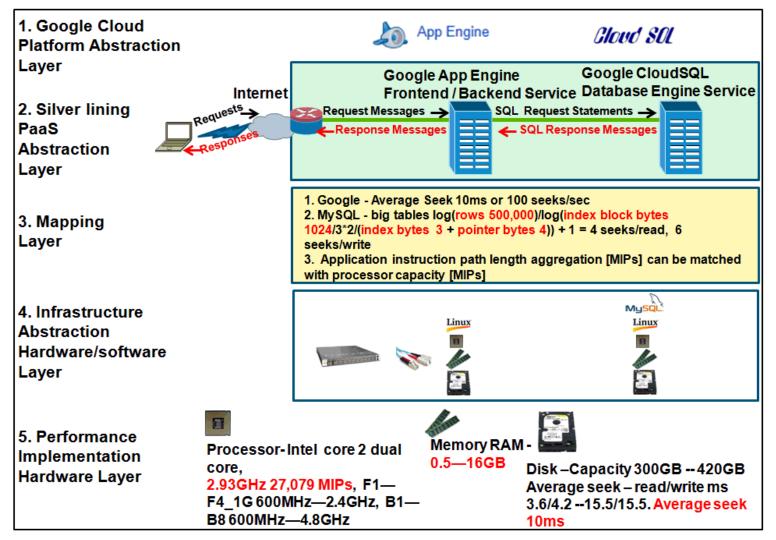
Transactions per minute (tpmC) range 12 - 379

Three data points for number of, concurrent users 10, 40, 320

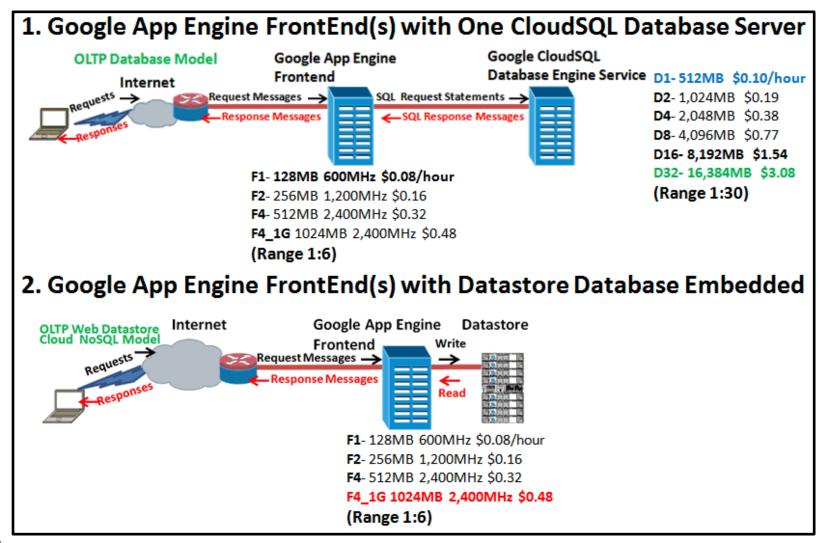

Simulation results compare favorably with benchmark results Benchmark throughput transactions per minute (12.5, 50.4, 338.1) Simulation throughput transactions per minute (12, 52, 379)

Outline

- Motivation
- Research Problem
- Related Work
- The Proposed Solution
 - GoBench
 - GoSim
- Case Studies
- Conclusion


Google-Cloud-Grant Case Experiment Design

- 1. Build CIO Tools to help understand cloud performance and costs
- 2. Use standard benchmarks to test the fidelity of simulation models
- 3. Provide traceability from Problem to Contribution to Future Work


Google Cloud Infrastructure Abstraction Layers

Five Layers of Discovery

Google Cloud Database Configuration Alternatives

Database CloudSQL and Datastore:

Google Cloud TPC-C Implementation

TPC-C Benchmark Programs Re-written in Java (2 programs, 2,100 LoC) and Python (13 programs, 4,100 LoC)

	New Order		
Warehouse:	District:	Date:	
keys	Name:	Credit: %Disc:	
omized	Number of Lines:	W_tax: D_tax:	
enchmark	Item Name	Qty Stock B/G Price	Amoun
ation			
Execution Status Terminal/User ID:			Submit

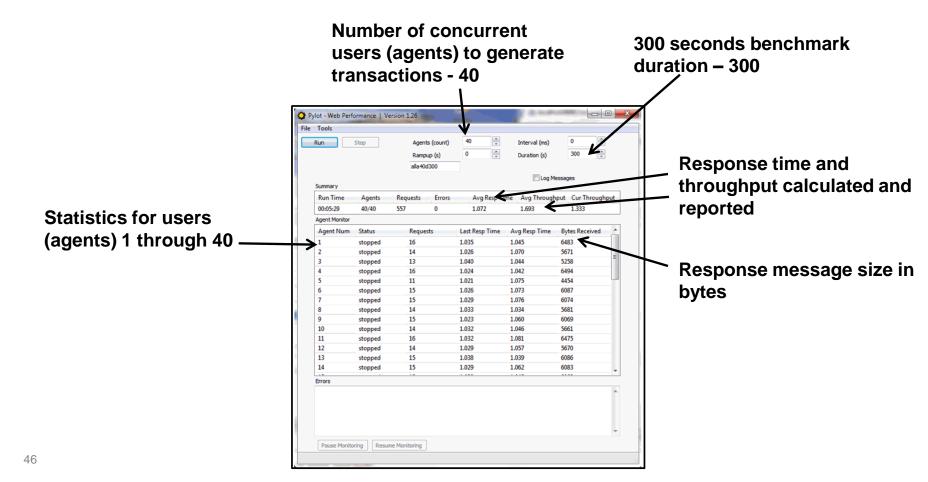
1. Design the New Order transaction user interface in accordance with TPC-C benchmark specifications

2. Design and implement the New Order benchmark web program in Java and Python

3. Design and implement the remaining TPC-C benchmark transactions: Payment, Order Status, Delivery, Stock Level

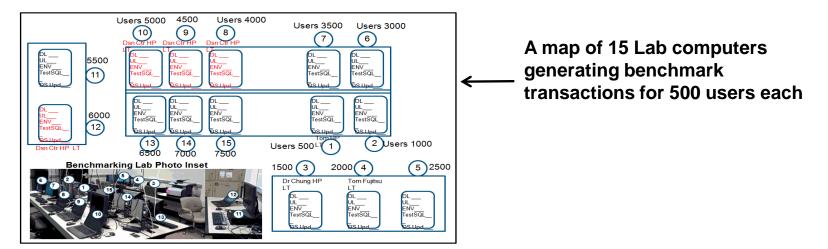
Google Cloud TPC-C Database Build

TPC-C Benchmark Standards Dictate Initial Database Load Characteristics


Data tables and required relationships	<pre>USE tpcc32; Table structure for table 'customer' DROP TABLE IF EXISTS 'customer'; /*!40101 SET @saved_cs_client = utf8 */; CREATE TABLE 'customer' ('c_w_id' int(11) NOT NULL, 'c_did' int(11) NOT NULL, 'c_discount' decimal(4.4) DEFAULT NULL, 'c_lest' varchar(16) DEFAULT NULL, 'c_first' varchar(16) DEFAULT NULL, 'c_first' varchar(16) DEFAULT NULL, 'c_balance' decimal(12.2) DEFAULT NULL, 'c_ytd_payment' float DEFAULT NULL, 'c_delivery_cnt' int(11) DEFAULT NULL, 'c_street_1' varchar(20) DEFAULT NULL, 'c_cstreet_2' varchar(20) DEFAULT NULL, 'c_cstreet_2' varchar(20) DEFAULT NULL, 'c_cstreet_2' varchar(20) DEFAULT NULL, 'c_cstreet_1' varchar(20) DEFAULT NULL, 'c_cstreet_1' varchar(20) DEFAULT NULL, 'c_cstreet_1' varchar(20) DEFAULT NULL, 'c_cstreet_1' Contextor NULL, 'c_cstreet_1' DEFAULT NULL, 'c_cstreet_1' DEFAULT NULL, 'c_cstreet_2' varchar(20) DEFAULT NULL, 'c_cstreet_2' varchar(20) DEFAULT NULL, 'c_cstreet_1' DEFAULT NULL, 'c_cstreet_1' DEFAULT NULL, 'c_cstreet_1' DEFAULT NULL, 'c_cstreet_1' DEFAULT NULL, 'c_since' timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_' 'c_middle' char(2) DEFAULT NULL, 'c_data' varchar(500) DEFAULT NULL, 'c_data' varchar(500) DEFAULT NULL, 'c_data' varchar(500) DEFAULT NULL, 'c_didt' 'c_d_i', 'c_d_id', 'c_last', 'c_first')) ENGINE-InnoDB DEFAULT CHARSET=utf8; /*!40101 SET character_set_client = @saved_cs_client */;</pre>
Randomized database keys _ and data elements	Dumping data for table `customer` Dumping data for table `customer` LOCK TABLES `customer` WRITE; /*!40000 ALTER TABLE `customer` DISABLE KEYS */; INSERT INTO `customer` VALUES (1,1,1,0.4020,'GC','CALLYBARPRI','bglvNIwHCup: INSERT INTO `customer` VALUES (1,1,1784,0.4818,'GC','EINGPRESOUGHT','hCfXbz; INSERT INTO `customer` VALUES (1,2,553,0.4188,'GC','EINGPRESOUGHT','JIQemOL, INSERT INTO `customer` VALUES (1,2,2332,0.1829,'GC','PRIPRESATION','LhPQcQY INSERT INTO `customer` VALUES (1,3,1114,0.3032,'GC','ESEBARESE','MQGWoutNA'

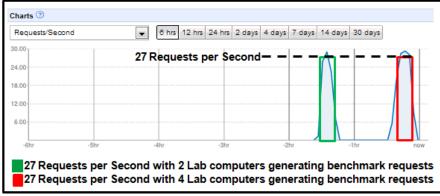
Maintain the ratio of ten users per number of warehouses in initial database

Google Cloud Benchmark Transaction Generator


Google Cloud Project Benchmark Modified Stress-testing Tool to Generate 40 Concurrent User's Transactions

Pylot.py, open source web stress testing tool, modified to generate TPC-C benchmark transactions with random database keys, keying time and think time

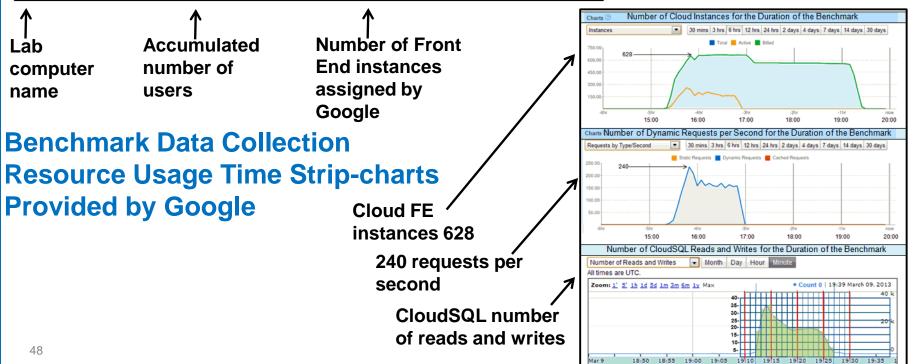
Google Cloud Benchmarking Infrastructure


Google Cloud Project UTD Benchmark Generating Lab Map - 500 Concurrent Users through 7,500 Users

Google Cloud Project Benchmark Requests per Second Strip-chart

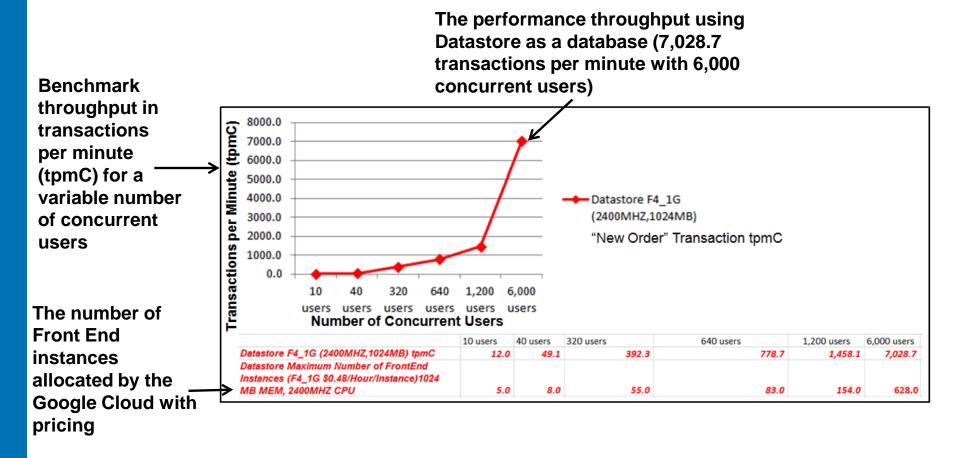
Benchmark experiments with varying number of computers (2 versus 4 shown in the Google-provided strip-chart) generating the same total transaction volume. Test the lab sensitivity to generating environment changes. 2 computers versus 4 computers demonstrated no sensitivity (27 requests per second)

47

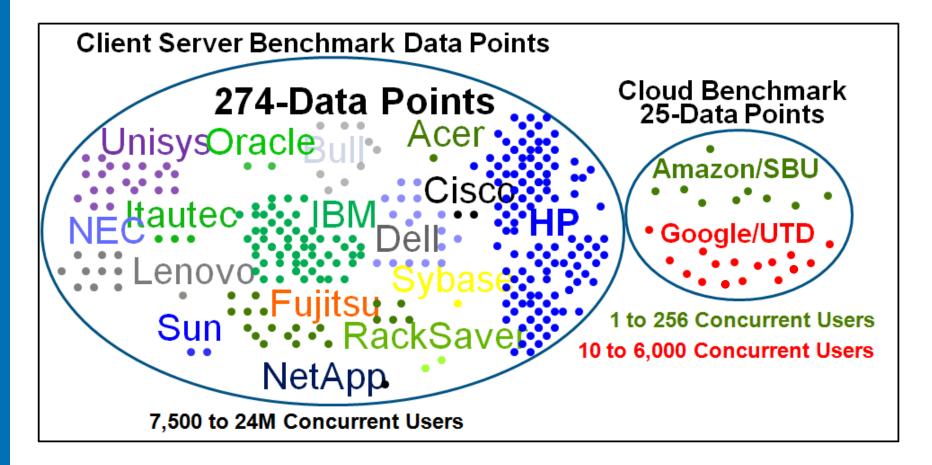


Google Cloud Benchmark Metrics

Google Cloud Project Benchmark Record of Experiments Example


10/06/2013	Users	Duration	WHSE	# Users	Duration	Duration	Actual	# GAE FE	# Requests	Bandwidth Download	Bandwidth Upload	
Test Name					Minutes			Instances	•		Mbps	Comments
HM1	500	5100	0	500	85	1.42	3:22	255	92,660	56	20	Start of bench
HM2	500	4980	50	1,000	83	1.38	3:24	322	89,935	61	22	
HM3	500	4860	100	1,500	81	1.35	3:26	363	87,215	63	22	
HM4	500	4740	150	2,000	79	1.32	3:28	373	84,464	56	22	
HM5	500	4620	200	2,500	77	1.28	3:30	445	81,629	65	22	
HM6	500	4500	250	3,000	75	1.25	3:32	464	79,392	60	22	
HM7	500	4380	300	3,500	73	1.22	3:34	487	76,369	59	21	
HM8	500	4260	350	4,000	71	1.18	3:36	512	73,614	60	23	
HM9	500	4140	400	4,500	69	1.15	3:38	559	70,932	60	22	
HM10	500	4020	450	5,000	67	1.12	3:40	577	68,282	59	21	
HM11	500	3900	500	5,500	65	1.08	3:42	605	65,940	26	18	
HM12	500	3780	550	6,000	63	1.05	3:44	628	63,348	55	20	Level instances

6,000 concurrent users level benchmark

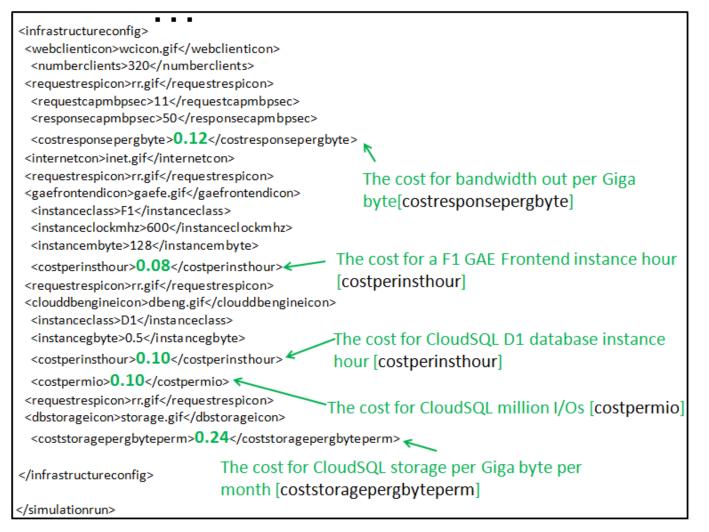

Google Cloud Benchmark Results

Google Cloud Results for Embedded Datastore Database

Google Cloud Benchmark Versus Client Server Results

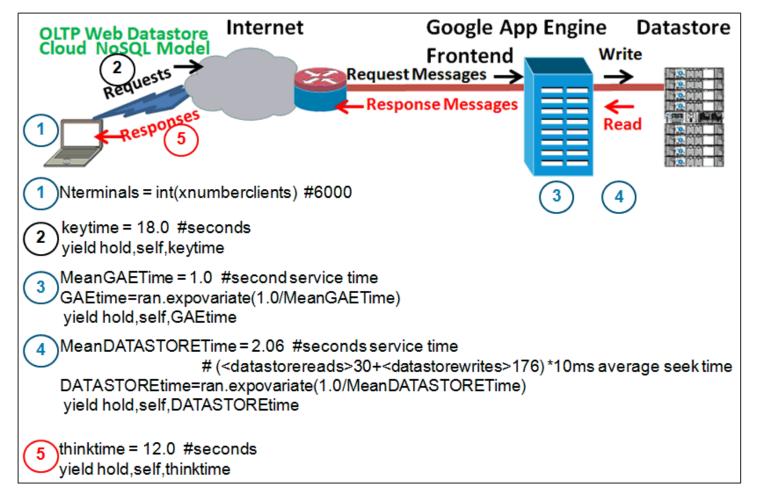
Maximum Number of Concurrent Users in Cloud Increased to 6,000

Google Cloud Simulation Describe a Simulation Experiment

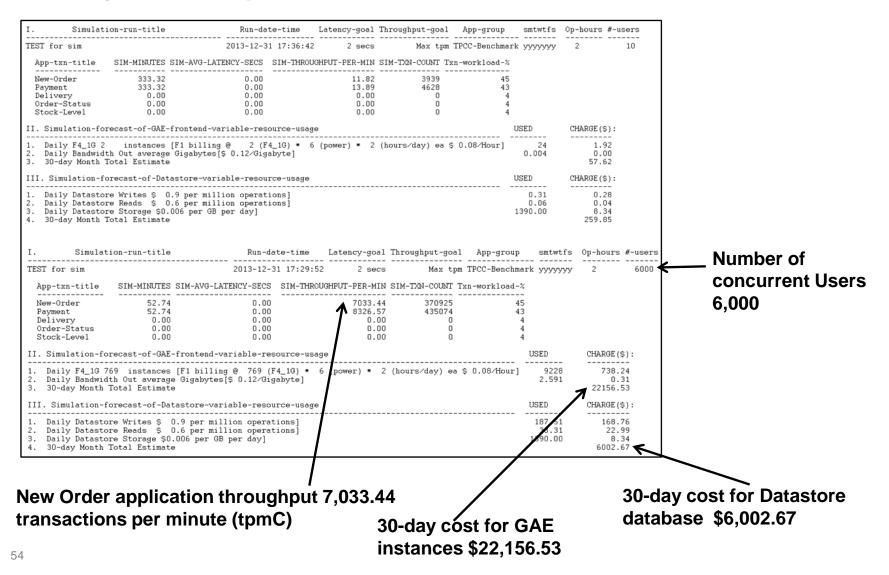

Google App Script Implementation of Cloud Application Simulation Forecaster GUI

	CLOUD APPLICATION SIMULATION FORECASTER					
Performance goals —>	Create Simulation Control: File GoogleXmLxml V Simulation Goals: Response (in Secs) ATPM CreateXML ReadXML					
	Application Group Operation Days Operation Days Operation Hours Time Zone PST V Database Name Database Size Size Change Per Day Image: ChangePer Day Image: Change Per Day					
Application workload \rightarrow	Application Workload Application Title Total Daily Request Work Load Mix (%) Request Message Size(Bytes) Response Message Size(Bytes) Request Keying Time(Secs) Response Think Time(Secs) Program Path Length(MIPS) Database Engine Path Length(MIPS) No Of Database Engine Reads No Of Database Engine Writes Cache hit percentage No Of Datastore Reads No Of Datastore Writes Cache Hit Percentage No Of Instances					
Architecture infrastructure →	Cloud Infrastructure Configuration Configuration Configuration Client Client Attributes Number of Clients					

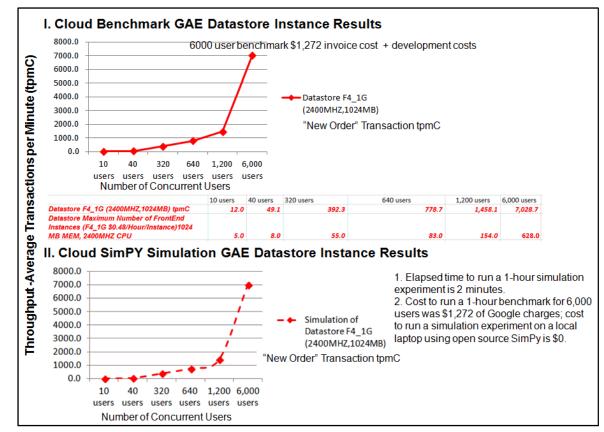
Generate XML to describe the complete simulation experiment


Google Cloud Simulation Describe a Simulation Experiment

Excerpt of a Generated XML Description of a Google Cloud Architecture Infrastructure with Component Costs Highlighted


Google Cloud Simulation Key Simulation Model Variables

SimPy DES Framework Simulation Model Key XML Variables


Google Cloud Simulation Results Report

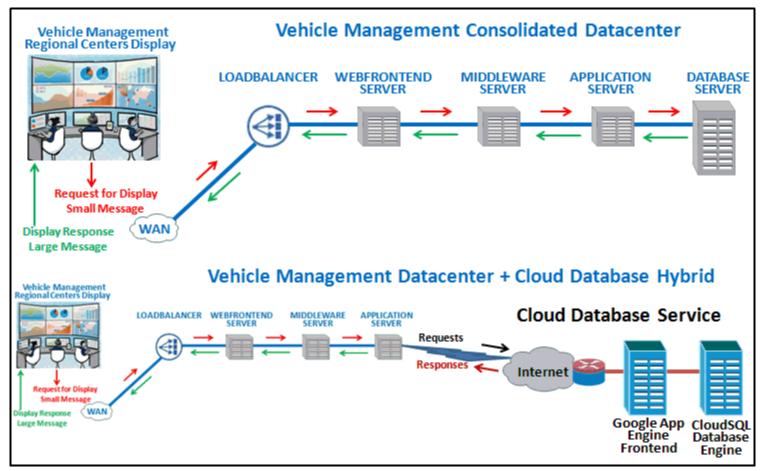
SimPy Model Report for 10 Users and 6,000 Users

Google Cloud Benchmark(s) and Simulation(s) Fidelity

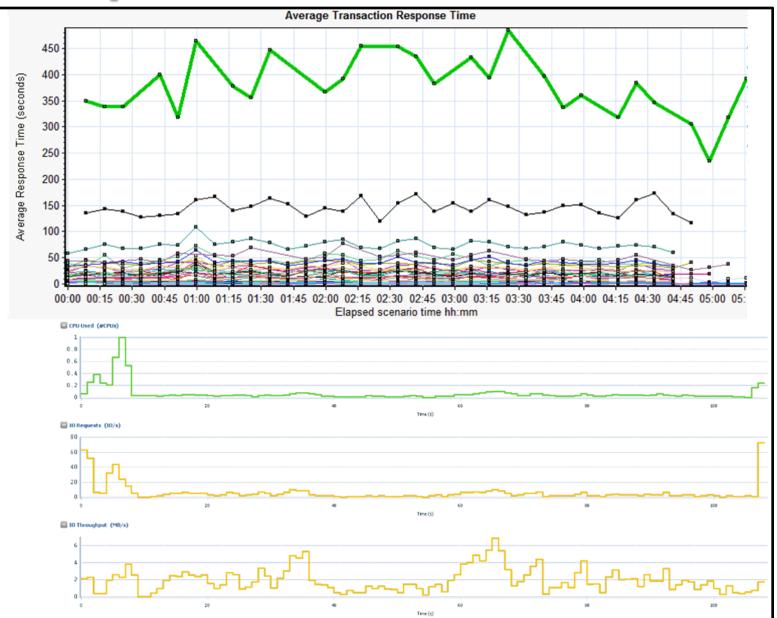
Identical Number of Concurrent Users (10, 40, 320, 640, 1200, 6000) for Benchmark and Simulation

Simulation results compare favorably with benchmark results Benchmark throughput transactions per minute (12.0, 49.1, 392.3, 778.7, 1458.1, 7028.7) Simulation throughput transactions per minute (12, 47, 379, 756, 1416, 7033)

Google Cloud Case Experiment Summary


Milestone Event	Dates	Metrics/Information
Create a statistical model of the TPC-C benchmark databases and transaction workloads	10/2012	14 databases, 5 transactions
Organize Silverlining research team and deploy GAE tutorial programs locally and remotely	11/2012	21 UTD software engineering students
Design , code [Java] and test the complete TPC-C benchmark for GAE and CloudSQL	12/2012-1/2013	2 programs, 2.1 Kloc, 3 person months
Execute TPC-C benchmarks for GAE and CloudSQL	2/2013-5/2013	29 benchmark runs and analysis
Design , code [Python] and test the complete TPC-C benchmark and DMS for GAE Datastore NoSQL	10/2012-6/2013	13 programs, 4.1 Kloc, 9 person months
Begin modification of three open source discrete event simulators for GAE Simulation/forecaster	5/2013	CloudSim, Omnet++, SimPy
Design , code [Google App Script/XML] and test the graphical user interface XML generator	6/2013-7/2013	2 programs, 1.1 Kloc, 3 person months
Generate and import a TPC-C benchmark 750-warehouse-database to the GAE Datastore NoSQL	9/2013	1.3 terabytes
Execute TPC-C benchmarks for GAE Datastore NoSQL	7/2013-10/2013	11 benchmark runs and analysis

GAE Research UTD Project Milestone Table


- 1. Software Engineering tools (GoBench GoSim) were constructed to help CIOs understand cloud performance and costs.
- 2. Standard benchmarks (TPC-C) were re-coded for Google Cloud App Engine and used to test the fidelity of simulation models.
- 3. UTD graduate students had no difficulty re-coding the benchmarks (in Java and Python) or executing in the cloud.
- Use of cloud pay-as-you-go resources proved to eliminate the need to build out an infrastructure benchmark experiments for usage cost ranged (\$0 \$1,300) per 1-hour benchmark execution [simulation experiment costs running open source SimPy on a personal laptop \$0].

Vehicle Management System (VMS)

- 1. Analyze VMS operations data and validate architecture for future
- 2. Build simulation model experiments to demonstrate feasibility of alternative infrastructure designs under consideration

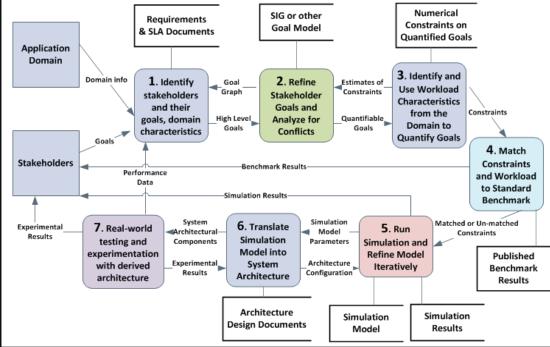
VMS Operation Metrics Collection

VMS Simulations

Local Datacenter Simulation

Hybrid Local Datacenter, Cloud Database Simulation

MaxCompletions=800000MaxrunTime minutes=333.33Number Concurrent Users=300Model Type=INFinite Capacity, NO Resource QueuesLocal WAN RoundTrip Time ms=20
KTA Message Request bytes=100KTA Message Response bytes=1000000KTA Think Time secs=10.00000KTA Txn Local WAN Request secs-E=0.00003KTA Txn LOADBAL Request secs-E=0.00000KTA Txn WEBFRONTEND Request secs-E=0.01000KTA Txn MIDDLEW Request secs-E=0.02000KTA Txn APPLICATION Request secs-E=0.10000
KTA Txn LOCALDATABASE Request secs-AM = 3.10000
KTA Txn APPLICATION Response secs-E = 0.10000 KTA Txn MIDDLEW Response secs-E = 0.02000 KTA Txn WEBFRONTEND Response secs-E = 0.01000 KTA Txn LOADBAL Response secs-E = 0.00000 KTA Txn Local WAN Response secs-AC = 0.30518
Simulation results: KTA total txns = 438900 KTA Simulation minutes = 333.20 KTA Txns per minute = 1317.21 KTA Average Response secs = 3.67 Total Txns = 438900


MaxCompletions = 800000
MaxrunTime minutes = 333.33
Number Concurrent Users = 300
Model Type = INFinite Capacity, NO Resource Queues
Local WAN RoundTrip Time ms = 20
Internet Cloud RoundTrip Time ms = 55
KTA Message Request bytes = 100
KTA Message Response bytes = 1000000
KTA Think Time secs = 10.00000
KTA Txn Local WAN Request secs-E = 0.00003
KTA Txn LOADBAL Request secs-E = 0.00000
KTA Txn WEBFRONTEND Request secs-E = 0.01000
KTA Txn MIDDLEW Request secs-E = 0.02000
KTA Txn APPLICATION Request secs-E = 0.10000
KTA Txn CLOUDINTERNET Request secs-AC = 0.00003
KTA Txn CLOUDFRONTEND Request secs-E = 0.13000
KTA Txn CLOUDDATABASE Request secs-AM = 3.10000
KTA Txn CLOUDFRONTEND Response secs-E = 0.13000
KTA Txn CLOUDINTERNET Response secs-AC = 0.83923
KTA Txn APPLICATION Response secs-E = 0.10000
KTA Txn MIDDLEW Response secs-E = 0.02000
KTA Txn WEBFRONTEND Response secs-E = 0.01000
KTA Txn LOADBAL Response secs-E = 0.00000
KTA Txn Local WAN Response secs=AC = 0.30518
Simulation results:
KTA total txns = 406200
KTA Simulation minutes = 333.18
KTA Txns per minute = 1219.14
KTA Average Response secs = 4.76
Total Txns = 406200

Outline

- Motivation
- Research Problem
- Related Work
- The Proposed Solution
 - GoBench
 - GoSim
- Case Studies
- Conclusion

Summary – Integrated Framework Contribution

- The GoBench and GoSim integrated software engineering framework demonstrates promise as a vehicle to integrate goals, application workload and architecture infrastructure
- The framework views the simulation model as an architecture-domain-specific case of knowledge management SIG or other Requirements
- The XML, developed to describe the simulation experiment, provides a detailed language to reason about goals, workload and architecture infrastructure
- A discrete event simulator can be used as a tool to reason about these three important architecture elements

Contributions - Specific

- In addition to the development of the GoBench GoSim integrated software engineering framework:
- 1. Stakeholder NFR-goals Softgoal interdependency graphs (SIG) were used to elicit and document stakeholder performance goals as described by the TPC-C benchmark standard. The SIG provided a more structured approach (more structured than text) to express SLAs and record the rationale for decisions of architectural alternatives
- 2. OLTP benchmarks for cloud architectures Java (2,100 lines of code) and Python (4,100 lines of code) versions of the TPC-C benchmark programs were coded, tested and executed in the Google Cloud. Sixteen new cloud TPC-C benchmark result reports (new highest cloud throughput of 7028.7 transactions per minute for 6,000 concurrent users) were documented
- 3. Architecture resource elasticity The case experiment discovered Google CloudSQL database limits of elasticity (12 GAE Frontend instances to 16 GAE Frontend instances) through benchmarking. Additionally, the benchmark proved automatic elasticity (628 GAE Frontend instances) for the Google App Engine when using Datastore as a database. The limit of 628 GAE Frontend instances was not a limit of the Google cloud infrastructure. The 628 limit was imposed by a client network security appliance

Contributions - Specific

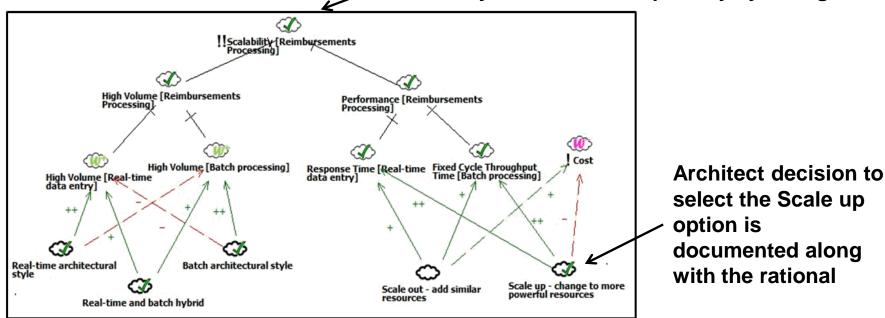
- In addition to the development of the GoBench GoSim integrated software engineering framework:
- 4. Describe a discrete event simulation Nine cloud simulation result reports were documented that closely align with like benchmarks to increase confidence in the fidelity of the simulation model. A Google App Script (1,100 lines of code) graphical user interface was created to describe a simulation experiment and generate a XML experiment description to be used by multiple discrete event simulators (A SimPy, open source simulation framework, was implemented and executed to provide all simulation results). The GUI reduced the difficulty in describing a simulation experiment
- 5. Basic software engineering artifacts Key XML data structures with data elements were built to describe simulation experiments. The XML tag names and values emphasize essential goal, application workload and architecture infrastructure characteristics for continued system maintenance during the operational life of an application (2 performance goal data elements, 39 application workload characteristics data elements and 37 data elements used to describe the architecture infrastructure topology)

Future Work

Additional non-cloud architecture validation of the GoBench GoSim integrated software engineering framework:

- 1. Stakeholder NFR-goals Add features to the RE Design tool to generate goal XML for automatic simulation input
- 2. OLTP benchmarks for cloud architectures Build a local Requirements Engineering Cloud Benchmarking and Simulation Laboratory. Design local lab test-bed to benchmark and simulate a hybrid mix of datacenter and cloud. Extend the Silverlining web site to include benchmark results and open source simulation models
- 3. Architecture resource elasticity Locate the next Cloud GAE/CloudSQL elasticity constraint above 640 concurrent users by benchmarking the expected new Google CloudSQL database simultaneous connection limit of 3,200. Find the next Cloud GAE/Datastore elasticity constraint above 6,000 concurrent users by using non-UTD Computer Science client network resources
- 4. Describe a discrete event simulation Augment the capabilities of the Simulation/Forecaster GUI to drag-and-drop graphic elements and animation when creating architecture topology descriptions and simulation execution status demonstration, respectively. Investigate the addition of a "distance to reality" fidelity score.
- 5. Basic software engineering artifacts Create a local test-bed to compare genetic algorithm results to benchmarks and simulation results. Add local lab cloud emulation (to benchmark and collect resource usage metrics) for Google,
 4 Amazon, Azure and OpenStack cloud-provider tests
- 64

Publications

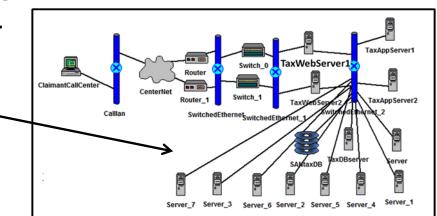

- Chung, T. Hill, and N. Subramanian. Silverlining: A Cloud Forecaster Using Benchmarking and Simulation, presented at the 26th Annual IEEE Software Technology Conference, Long Beach, California, March-April, 2014.
- L. Chung, T. Hill, O. Legunsen, Z. Sun, A. Dsouza and S. Supakkul. A goal-oriented simulation approach for obtaining good private cloud-based system architectures, Original Research Article Journal of Systems and Software, Volume 86, Issue 9, pages 2242-2262, September 2013.
- T. Hill. Software Maintenance and Operations Hybrid Model: An IT Services Industry Architecture Simulation Model Approach, IEEE Research Challenges in Information Science (RCIS), 2011 Fifth International Conference, May 2011.
- T. Hill, S. Supakkul, and L. Chung. Run-time monitoring of system performance: A goal-oriented and system architecture Simulation approach, Requirements@Run.Time, 2010 First International Workshop, Sydney, Australia, pages 31-40, 2010.
- S. Supakkul, T. Hill, E. A. Oladimeji, and L. Chung; "Capturing, Organizing, and Reusing Knowledge of NFRs: An NFR Pattern Approach." In Proc. 2nd Intl. Workshop on Managing Requirements Knowledge (MaRK'09) in conjunction with RE'09, Atlanta, Sept. 1, 2009.
- S. Supakkul, T. Hill, E. A. Oladimeji, and L. Chung; "Security Threat and Vulnerability Mitigation Patterns: A Case of Credit Card Theft Mitigation." In Proc. of the 16th Patterns Languages of Programs, Chicago, August 2009.
- T. Hill, S. Supakkul and L. Chung. Confirming and reconfirming architectural decisions on scalability: a goal-driven simulation approach, International Workshop on System/Software Architectures, IWSSA'09, Springer LNCS 5872, 2009.

Questions?

Thanks, Tom

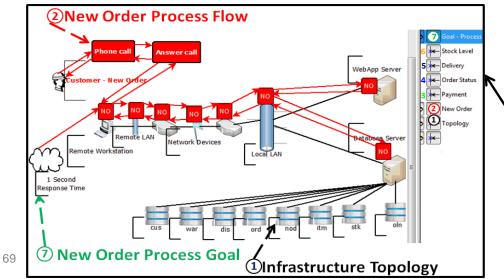
 Confirming and Reconfirming Architectural Decisions on Scalability (IWSSA'09, Springer LNCS 5872, 2009)
 Approach: Propose an integration of goal-orientation, which is qualitative in nature, and simulation, which is quantitative in nature
 Challenge: Difficult to analyze if an architectural design incorporates good decisions or even bad ones

Solution: Use SIG to document NFR scalability goals and sub-goals Scalability is noted as the primary system goal



Run-time monitoring of system performance: A goal-oriented and system architecture Simulation approach

- (Requirements@Run.Time, 2010 First International Workshop, pp. 31-40. Sydney, Australia, 2010)
- **Approach:** Propose a goal-oriented framework to record goals, and a system architecture simulation approach to realize and monitor the run-time performance characteristics of the system
- Challenge: Simulation models were constructed and used in design and simply ignored during run-time

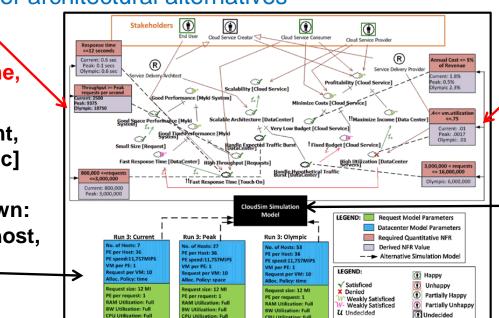

Solution: A simulation model is constructed and experiments analyzed to consider varying workloads, resource consumptions, and run-time capacities

The production runtime infrastructure (with performance characteristics and capacities) is synchronized with model

Topology of the runtime system is duplicated completely in a simulation model

- Software Maintenance and Operations Hybrid Model: An IT Services Industry Architecture Simulation Model Approach
- (IEEE Research Challenges in Information Science (RCIS), 2011 Fifth International Conference, May 2011)
- **Approach:** Propose an architecture simulation model hybrid, built from existing software development artifacts and operations artifacts, which can endure for the operational life of a system
- Challenge: Software maintenance artifacts and operations artifacts continue to diverge down two separate paths filled with duplication and unused information

Solution: A multi-layer simulation model combining goals, process, architecture


- 1. A layered infrastructure topology diagram reproduced for input to simulation
- 2. New Order transaction workload and resource usage defined
- **3.-6** Other transactions defined
- 7. New Order transaction response time goal is specified

A goal-oriented simulation approach for obtaining good private cloud-based system architectures

(Journal of Systems and Software, 86(9): 2242-2262 2013)
 Approach: Propose a goal-oriented simulation approach for cloud-based system design for multiple stakeholders: end user, cloud service customer, provider
 Challenge: A lack of methodologies for incorporating stakeholder goals into the design process for such systems, and for assuring with higher confidence
 Solution: Simulations are run against various configurations of the model as a way of rationally exploring, evaluating and selecting among incrementally better architectural alternatives

Simulation results: response time, throughput..

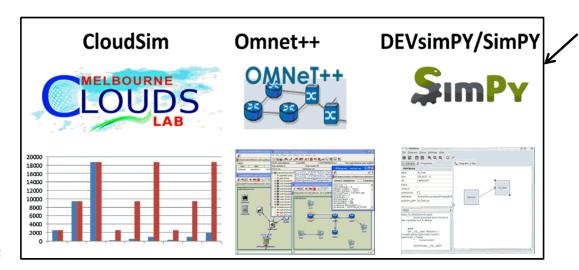
Three [current, peak, Olympic] simulation models shown: # hosts, PE/host, PE speed,_____ requests..

Simulation results for each model: annual cost of revenue, VM utilization, hypothetical traffic..

Softgoals (Softgoal Interdependency Graph), workflow and architecture integrated graphically via CloudSim (cloud simulator)

Google App Engine: Software Benchmark and GAE Simulation Forecaster Grant - Project Summary
(Google App Engine Research Awards, 11/6/2013)
Approach: Build a TPC-C online transaction processing benchmark in the Google cloud using Java and Python
Challenge: Comparing the benchmark performance and cost data points to simulation forecaster results
Solution: A summary of nine project milestones and accompanying metrics (10/2012-10/2013) reported to show the cloud benchmark

performance and cost data points along with early simulation results


Milestone Event	Dates	Metrics/Information
Create a statistical model of the TPC-C benchmark databases and transaction workloads	10/2012	14 databases, 5 transactions
Organize Silverlining research team and deploy GAE tutorial programs locally and remotely	11/2012	21 UTD software engineering students
Design , code [Java] and test the complete TPC-C benchmark for GAE and CloudSQL	12/2012-1/2013	2 programs, 2.1 Kloc, 3 person months
Execute TPC-C benchmarks for GAE and CloudSQL	2/2013-5/2013	29 benchmark runs and analysis
Design , code [Python] and test the complete TPC-C benchmark and DMS for GAE Datastore NoSQL	10/2012-6/2013	13 programs, 4.1 Kloc, 9 person months
Begin modification of three open source discrete event simulators for GAE Simulation/forecaster	5/2013	CloudSim, Omnet++, SimPy
Design , code [Google App Script/XML] and test the graphical user interface XML generator	6/2013-7/2013	2 programs, 1.1 Kloc, 3 person months
Generate and import a TPC-C benchmark 750-warehouse-database to the GAE Datastore NoSQL	9/2013	1.3 terabytes
Execute TPC-C benchmarks for GAE Datastore NoSQL	7/2013-10/2013	11 benchmark runs and analysis

Supplemental – Reports/Presentations

Systems of Systems Engineering: A Goal-driven Architecture Simulation Approach, Quarterly Status Reports and Summaries (NSF IUCRC Net-Centric Software & Systems Consortium, 2010 – 2014) Approach: Design a framework to use goals and simulation to help document complex systems-of-systems architectures

Challenge: SoS failures are "... traceable to excessive complexity, poor architectural choices, ill-defined processes, non-validated systems engineering practices or lack of experience in applying valid practices." [INCOSE Systems Engineering Vision 2020]

Solution: A framework and tools developed to use goals and simulation to understand the behavior complex systems-of-systems architectures

Three open source discrete event simulators used as alternatives to prove the simulation model can confirm Systems of Systems architecture performance and cost: 1. CloudSim – Java 2. Omnet++ - C++ 3. SimPY - Python