
Confirming and Reconfirming Architectural

Decisions: A Goal-oriented Simulation Approach

 A Dissertation Presentation

By

Thomas L. Hill

Ph.D. Supervisory Committee

Dr. Lawrence Chung (Chair)

Dr. Farokh Bastani

Dr. Kang Zhang

Dr. Latifur Khan

Dr. Eric Wong

2

Outline

• Motivation

• Research Problem

• Related Work

• The Proposed Solution

• GoBench

• GoSim

• Case Studies

• Conclusion

3

“Evaluate a poor performing complex national tax system”

• Software is functionally sound

• Architecture fails the goals of users due to:

• Poor performance

• Unexpected development and maintenance cost

• Engineers unable to predict or confirm architecture behavior

4

Motivation

• The architecture evaluation points of interest:
• Design was not confirmed or reconfirmed via

analysis, benchmarking, simulation or volume

testing

• Design confirmed when system placed into

production

• Non-functional requirements defined in a 200 page

service level agreement

• The behavior of the system was too complex to

understand or maintain

• The application workload was not documented or

matched to the performance characteristics of the

run-time infrastructure

5

Outline

• Motivation

• Research Problem

• Related Work

• The Proposed Solution

• GoBench

• GoSim

• Case Studies

• Conclusion

6

Research Problem

• Today’s software engineers are unable to

assess or predict a system-architecture’s

ability to satisfy stakeholder performance and

cost goals, in a fast and inexpensive manner.

• The tools required to quickly understand,

assess and predict the behavior of complex

cloud architectures are disconnected and in a

nascent stage of usage by industry software

engineers.

Unanswered Questions?

7

Research Problem - Specific

• Several unanswered questions remain as obstacles in

the path to understand the behavior of these modern

systems:
1. Why are stakeholder NFR-goals expressed as natural

language contract-binding service level agreements?

2. Where are the online transaction processing (OLTP)

benchmarks results for cloud architectures?

3. How can the limits of cloud architecture resource elasticity

be discovered?

4. Why is it so difficult to describe a discrete event simulation

model experiment?

5. What basic software engineering artifacts and tools are

needed to understand the behavior of a complex enterprise-

level system throughout its development and operational

life?

8

Research Goal and Approach

Research Goal: This research seeks to make a difference throughout the

software development and maintenance lifecycle by using

benchmarking and new discrete event simulation modeling

techniques to integrate: NFR goals, workload and architecture

infrastructure.

Approach:

• Build on NFR goal graphical representations as softgoals

• Use standard benchmarking to specify performance goals,

requirements, database definitions and transaction workload

characteristics

• Generate multiple benchmark experiments to collect actual

performance and resource usage of multiple architectures

• Use multiple open source discrete event simulators to model the

benchmarked performance goals, requirements, database

definitions and transaction workload characteristics

• Compare benchmark results to simulation results to

authenticate the fidelity of simulation as an architecture

reconfirming tool

9

Outline

• Motivation

• Research Problem

• Related Work

• The Proposed Solution

• GoBench

• GoSim

• Case Studies

• Conclusion

10

Related Work
• Intersection of four evolving engineering domains:

• Requirements Engineering

• Software Engineering

• Systems Engineering

• Computer Simulation

11

Related Work
Requirements Engineering

UML Profile for Modeling QoS [OMG06]

Service Level Agreements and Monitoring [EDS/HP10]

+ UML extension specifications through stereotypes

+ System concerns: User satisfaction and resource

consumption

+ Categories (performance, dependability, security,

integrity, coherence, throughput, latency, efficiency,

demand, reliability, availability)

- Definitions only; system goals, design, implementation

missing

+ Service Level Agreement (SLA) is a

contracted system performance goal

+ SLA components (what provider promises,

how delivered, who will measure, what penalties

provider will pay)

+ HP Transaction Summary monitoring display

- Not traceable to system design requirements

12

Related Work
Requirements Engineering

NFR Framework - Goals
a. NFR in Software Engineering [CNYM00]

b. Confirming and Reconfirming Architectural

Decisions on Scalability: A Goal-Driven Simulation

Approach [HSC09]

+ Non-functional requirements

represented as softgoals (Softgoal

Interdependency Graph)

+ Goal oriented analysis, document

decisions rationale

+ Simulation to assist making

architecture decisions

- No integration of goals, transaction flow

and architecture

- Only scalability goal researched

13

Related Work
Software Engineering

Software Engineering Body of Knowledge [IEEE04]

+ Computer scientists extend

knowledge, software engineers build

artifacts

+ 10 key knowledge areas 14 deep

(requirements to quality)

- Concerned with process and

lifecycle; goals not mentioned

14

Related Work
Software Engineering

Transaction Processing Benchmarks [TPC-C11]

Transaction Processing Council Benchmarks [TPC-C13]

+ Standard objective verifiable performance

and cost OLTP, RDB since 1992

+ Business throughput metrics; number of

orders processed per minute with cost

- OLTP and relational database only

- High cost to benchmark, high cost to

customize

+ 274 client server benchmarks documented

+ 9 cloud benchmarks using Amazon cloud

created by Stony Brook University

- No cloud benchmarks for Google, Microsoft,

HP

15

Related Work
Software Engineering

Software Performance Engineering [Smith93]

Extending and Formalizing UML 2.0 Activity Diagrams … [Chung10]

+ Analysis strategies (adapt-to-precision, simple-to-

realistic, best-and-worst-case)

+ SPE data (performance requirements, behavior

patterns, software description, execution

environment, resource usage estimates)

 - Petri net model analysis training needed

+ UML Activity diagrams can be used to

document the workflow of business and

computer functions

- Need to extend overlay of goals on workflows

and architecture

16

Related Work
Systems Engineering

Developing Systems Engineering Ontology [Sarder07]

SysML/UML 2 Behavior Diagrams – Systems Engineering Handbook [INCOSE11]

+ Taxonomy of systems engineering

functions

+ Top level systems engineering ontology

- Only high-level definitions provided

- Early stage, design not complete

+ SE lifecycle detail definition

+ Practice of architecture design (SysML-

OMG-INCOSE, DODAF, MODAF)

+ Modeling, simulation, prototyping

defined

- Little mention of goal-orientation

17

Related Work
Systems Engineering

 ISO/IEC 42010 Systems and Software Engineering – Recommended Practice

for Architecture Description of Software-intensive Systems [IEEE07]

PLM-CAD/CAM, BoM, Simulation [Siemens11]

+ UGS product lifecycle visualization Teamcenter

digital prototyping and plant simulation

+ Lifecycle concept-development to removal-

disposal

+ CAD, CAE, CAM, Digital Manufacturing, FEA,

PDM

- Expensive overkill for modeling information

technology systems

+ Expression and communication of architecture

+ Conceptual model of an Architectural

Description (AD)

- Deals with what, no elaboration of how to

develop an AD

- No mention of how to analyze an AD

18

Related Work
Computer Simulation

System Dynamics - Industrial Dynamics [Forrester61]

Discrete Event Simulation – Simulation Modeling and Analysis [Law91]

+ The noteworthy beginnings of management as a

science and systems dynamics

+ Building experimental models of companies and

industries –DYNAMO compiler

+ Stock and flow simulation predecessor

- No integration of goals, workflow and infrastructure

+ The teaching “Bible” of Discrete Event Simulation

(DES) since 1982

+ Basic components of DES model of a system that

changes over time (state, clock, event list, timer)

+ Simple modeling icons and simulation program

samples in Fortran and C

- No integration of goals, workflow and infrastructure

19

Related Work
Computer Simulation

CloudSim: a toolkit for modeling and simulation of cloud computing

environments .. [Calheiros10]

Simulation animation [Siemens10]

+ Uses 3D CAD structures to visualize and

animate plant flow

+ Operations animation to visualize performance

+ Communicate design alternatives to

management

- Costly for IT systems

+ Derived from an operational grid

simulator

+ Simulates using cloud components

(datacenter, brokers, host, broker, VM,

Cloudlets)

- No goal properties are considered

- Java used to modify workload and

infrastructure variables

20

Outline

• Motivation

• Research Problem

• Related Work

• The Proposed Solution

• GoBench

• GoSim

• Case Studies

• Conclusion

21

Software Engineering Framework
GoBench GoSim Framework Steps Annotated with Artifacts

Non-functional requirements

documented as Softgoal

Interdependency Graphs
Estimation of application

workload

Benchmark results of

throughput and

number of users

Simulation results of

throughput , number

of users and cloud

datacenter

Architecture

implementation diagram

LoadRunner test cases

and performance

Software

application

context

diagram

22

Outline

• Motivation

• Research Problem

• Related Work

• The Proposed Solution

• GoBench

• GoSim

• Case Studies

• Conclusion

23

GoBench Software Engineering Framework

Seven Software Engineering Steps - Confirming
Step 2 (Stakeholder Goals) and

Step 4 (GoBench Benchmark

Matching Function) Highlighted

24

GoBench Softgoal Interdependency Graph

Step 2 Non-Functional Requirements Performance Goals

Response time Throughput Scalability

25

GoBench TPC-C Benchmark Context

Step 4 Benchmark Application Workload and Flow

Customer Order

transaction flow

26

GoBench TPC-C Benchmark Architectures

Step 4 Benchmark Client Server Architecture

Addition of Internet Connection

Step 4 Benchmark Cloud Services Architecture

Local

Area

Network

27

GoBench TPC-C Benchmark Results

Step 4 Google Cloud Results for a D1 CloudSQL Database Instance

The performance throughput knee of the

D1 CloudSQL server (338.1 transactions

per minute with 320 concurrent users)

Benchmark

throughput in

transactions per

minute (tpmC) for a

variable number of

concurrent users

The number of Front

End instances

allocated by the

Google Cloud with

pricing

28

GoBench TPC-C Benchmark(s) Results
Step 4 Google Cloud Results for 15 Benchmark Experiments

Benchmark

throughput in

transactions per

minute (tpmC)

Number of

Cloud

FrontEnd

instances

automatically

allocated

The number of

concurrent users,

generating

transactions

29

GoBench TPC-C Benchmark(s) Results

Step 4 Google Cloud Results for 16 Benchmark Experiments Table

 Additional experiment with

640 users, CloudSQL mid-

power instance D16

Maximum transactions per minute

(tpmC) based on benchmark-required

transaction keying time and think time.

30

Outline

• Motivation

• Research Problem

• Related Work

• The Proposed Solution

• GoBench

• GoSim

• Case Studies

• Conclusion

31

GoSim Software Engineering Framework

Seven Software Engineering Steps - Reconfirming
Step 5 (Run Simulation

Experiments GoSim Function)

Highlighted

32

GoSim Simulation Model Three-step Process
Why Build Simulation Models?
1. Understand the behavior of a complex system by describing the

system, without constructing it

2. Eliminates the time and expense required to design, code and test

software and build-out the hardware/software infrastructure

Graphic User Interface used

to design the simulation

experiment; by describing:

goals, application workload

and the components of the

infrastructure

The GUI generates the

description of the simulation

experiment in XML

XML is used as input to a

discrete event simulator to

produce a report of

performance (throughput)

and cost

Simulation Three-steps (Describe Experiment, Generate, Execute):

33

GoSim Describe A Simulation Experiment

Graphical User Interface Design to Describe:

1. Performance Goals

2. Workload

3. Architecture Infrastructure

Performance goals

Application workload

Architecture infrastructure

Generate XML to describe the complete simulation experiment

34

GoSim Describe A Simulation Experiment

XML Design to Describe:

1. Performance Goals

2. Workload

3. Architecture Infrastructure

Performance goals

Application workload

Architecture infrastructure

35

GoSim Execute Simulation Forecaster

Google Cloud Project Simulation Forecaster Function Design

 Use XML that describes the

experiment as function input

and output performance

metrics and cost

Workload requests

represent resource usage

and architecture

infrastructure components

represent capacity

Simulator generates

workload of multiple users

and collects metrics

Queues are created for a

finite capacity model

Service times combine

usage and capacity

36

GoSim Execute Simulation Forecaster

Google Cloud Project Simulation Forecaster Mean Interarrival

Algorithm Example

Mean interarrival seconds

for 640 users

Transaction definition for the “New

Order” application workload

contained in XML, includes:

workload mix (45%), request keying

time (18 seconds) and response

think time (12 seconds)

37

GoSim Execute Simulation Forecaster

Google Cloud Project Simulation Forecaster Mean Database Service

Time Algorithm Example

“New Order” application

workload combined with

cloud capacity, defined in

XML, includes: mean

number of cloud database

read operations (23), mean

number of SQL seek

operations per read (4),

mean number of cloud

database write operations

(24), mean number of SQL

seek operations per write (6)

and the mean seek time (10

milliseconds)

38

GoSim Simulation Forecaster Report

Response time goal 2 seconds

Throughput goal 300 transactions

per minute

New Order application throughput

378.58 transactions per minute (tpmC)

30-day cost for GAE instances

$582.00

30-day cost for Database $178.65

Number of concurrent users 320

39

GoSim Throughput Simulation Results
Transactions per minute (tpmC) range 12 - 379

Three data points for number of

concurrent users 10, 40, 320

Simulation results compare favorably with benchmark results
 Benchmark throughput transactions per minute (12.5, 50.4, 338.1)

 Simulation throughput transactions per minute (12, 52, 379)

40

Outline

• Motivation

• Research Problem

• Related Work

• The Proposed Solution

• GoBench

• GoSim

• Case Studies

• Conclusion

41

Google-Cloud-Grant Case Experiment Design

1. Build CIO Tools to help understand cloud performance and costs

2. Use standard benchmarks to test the fidelity of simulation models

3. Provide traceability from Problem to Contribution to Future Work

Project Plan Tasks:
a. Use TPC-C benchmark

specification for txn

performance, cost,

database, workload

b. Generate benchmark

database

c. Upload benchmark

database to cloud

d. Use modified

performance test tool to

generate benchmark

transactions & save results

e. Restate TPC benchmark

specs as XML for

simulation input
f. Run simulation /

forecaster to produce

performance-cost report

and compare to

benchmark for fidelity

42

Google Cloud Infrastructure Abstraction Layers

Five Layers of Discovery

43

Google Cloud Database Configuration Alternatives

Database CloudSQL and Datastore:

44

Google Cloud TPC-C Implementation

TPC-C Benchmark Programs Re-written in Java (2 programs, 2,100

LoC) and Python (13 programs, 4,100 LoC)

1. Design the New Order

transaction user interface

in accordance with TPC-C

benchmark specifications

2. Design and implement

the New Order benchmark

web program in Java and

Python

3. Design and implement

the remaining TPC-C

benchmark transactions:

Payment, Order Status,

Delivery, Stock Level

Input keys

randomized

for benchmark

generation

45

Google Cloud TPC-C Database Build
TPC-C Benchmark Standards Dictate Initial Database Load

Characteristics

Randomized

database keys

and data

elements

Data tables

and required

relationships

Maintain the ratio

of ten users per

number of

warehouses in

initial database

46

Google Cloud Benchmark Transaction Generator

Google Cloud Project Benchmark Modified Stress-testing Tool to

Generate 40 Concurrent User’s Transactions

Statistics for users

(agents) 1 through 40

Number of concurrent

users (agents) to generate

transactions - 40

300 seconds benchmark

duration – 300

Response time and

throughput calculated and

reported

Response message size in

bytes

Pylot.py, open source web stress testing tool, modified to generate TPC-C

benchmark transactions with random database keys, keying time and think time

47

Google Cloud Benchmarking Infrastructure

Google Cloud Project UTD Benchmark Generating Lab

Map - 500 Concurrent Users through 7,500 Users

Google Cloud Project Benchmark Requests per

Second Strip-chart

A map of 15 Lab computers

generating benchmark

transactions for 500 users each

Benchmark experiments with varying

number of computers (2 versus 4 shown in

the Google-provided strip-chart) generating

the same total transaction volume. Test the

lab sensitivity to generating environment

changes. 2 computers versus 4 computers

demonstrated no sensitivity (27 requests

per second)

48

Google Cloud Benchmark Metrics

Google Cloud Project Benchmark Record of Experiments Example

Benchmark Data Collection

Resource Usage Time Strip-charts

Provided by Google

Lab

computer

name

Accumulated

number of

users

Number of Front

End instances

assigned by

Google

6,000 concurrent users

level benchmark

Cloud FE

instances 628

 240 requests per

second

CloudSQL number

of reads and writes

49

Google Cloud Benchmark Results

Google Cloud Results for Embedded Datastore Database

The performance throughput using

Datastore as a database (7,028.7

transactions per minute with 6,000

concurrent users)

Benchmark

throughput in

transactions

per minute

(tpmC) for a

variable number

of concurrent

users

The number of

Front End

instances

allocated by the

Google Cloud with

pricing

50

Google Cloud Benchmark Versus Client Server Results

Maximum Number of Concurrent Users in Cloud Increased to 6,000

51

Google Cloud Simulation Describe a Simulation Experiment

Google App Script Implementation of Cloud Application Simulation

Forecaster GUI

Performance goals

Application workload

Architecture infrastructure

Generate XML to describe the complete simulation experiment

52

Google Cloud Simulation Describe a Simulation Experiment

Excerpt of a Generated XML Description of a Google Cloud

Architecture Infrastructure with Component Costs Highlighted

53

Google Cloud Simulation Key Simulation Model Variables

SimPy DES Framework Simulation Model Key XML Variables

54

Google Cloud Simulation Results Report

SimPy Model Report for 10 Users and 6,000 Users

New Order application throughput 7,033.44

transactions per minute (tpmC)

Number of

concurrent Users

6,000

30-day cost for GAE

instances $22,156.53

30-day cost for Datastore

database $6,002.67

55

Google Cloud Benchmark(s) and Simulation(s) Fidelity

Simulation results compare favorably with benchmark results
 Benchmark throughput transactions per minute (12.0, 49.1, 392.3, 778.7, 1458.1, 7028.7)

 Simulation throughput transactions per minute (12, 47, 379, 756, 1416, 7033)

Identical Number of Concurrent Users (10, 40, 320, 640, 1200, 6000) for

Benchmark and Simulation

56

Google Cloud Case Experiment Summary

1. Software Engineering tools (GoBench GoSim) were constructed to

help CIOs understand cloud performance and costs.

2. Standard benchmarks (TPC-C) were re-coded for Google Cloud App

Engine and used to test the fidelity of simulation models.

3. UTD graduate students had no difficulty re-coding the benchmarks

(in Java and Python) or executing in the cloud.

4. Use of cloud pay-as-you-go resources proved to eliminate the need

to build out an infrastructure – benchmark experiments for usage

cost ranged ($0 - $1,300) per 1-hour benchmark execution

[simulation experiment costs running open source SimPy on a

personal laptop $0].

57

Vehicle Management System (VMS)

1. Analyze VMS operations data and validate architecture for future

2. Build simulation model experiments to demonstrate feasibility of

alternative infrastructure designs under consideration

58

VMS Operation Metrics Collection

59

VMS Simulations

60

Outline

• Motivation

• Research Problem

• Related Work

• The Proposed Solution

• GoBench

• GoSim

• Case Studies

• Conclusion

61

Summary – Integrated Framework Contribution

• The GoBench and GoSim integrated software

engineering framework demonstrates promise as a vehicle

to integrate goals, application workload and architecture

infrastructure

• The framework views the simulation model as an

architecture-domain-specific case of knowledge

management

• The XML, developed to

describe the simulation

experiment, provides a

detailed language to reason

about goals, workload and

architecture infrastructure

• A discrete event simulator

can be used as a tool to

reason about these three

important architecture

elements

62

Contributions - Specific
• In addition to the development of the GoBench GoSim

integrated software engineering framework:
1. Stakeholder NFR-goals - Softgoal interdependency graphs (SIG) were

used to elicit and document stakeholder performance goals as

described by the TPC-C benchmark standard. The SIG provided a more

structured approach (more structured than text) to express SLAs and

record the rationale for decisions of architectural alternatives

2. OLTP benchmarks for cloud architectures - Java (2,100 lines of code)

and Python (4,100 lines of code) versions of the TPC-C benchmark

programs were coded, tested and executed in the Google Cloud.

Sixteen new cloud TPC-C benchmark result reports (new highest cloud

throughput of 7028.7 transactions per minute for 6,000 concurrent

users) were documented

3. Architecture resource elasticity - The case experiment discovered

Google CloudSQL database limits of elasticity (12 GAE Frontend

instances to 16 GAE Frontend instances) through benchmarking.

Additionally, the benchmark proved automatic elasticity (628 GAE

Frontend instances) for the Google App Engine when using Datastore

as a database. The limit of 628 GAE Frontend instances was not a limit

of the Google cloud infrastructure. The 628 limit was imposed by a

client network security appliance

63

Contributions - Specific
• In addition to the development of the GoBench GoSim

integrated software engineering framework:
1. Describe a discrete event simulation - Nine cloud simulation result

reports were documented that closely align with like benchmarks to

increase confidence in the fidelity of the simulation model. A Google

App Script (1,100 lines of code) graphical user interface was created to

describe a simulation experiment and generate a XML experiment

description to be used by multiple discrete event simulators (A SimPy,

open source simulation framework, was implemented and executed to

provide all simulation results) . The GUI reduced the difficulty in

describing a simulation experiment

2. Basic software engineering artifacts - Key XML data structures with

data elements were built to describe simulation experiments. The XML

tag names and values emphasize essential goal, application workload

and architecture infrastructure characteristics for continued system

maintenance during the operational life of an application (2

performance goal data elements, 39 application workload

characteristics data elements and 37 data elements used to describe

the architecture infrastructure topology)

64

Future Work
• Additional non-cloud architecture validation of the GoBench GoSim

integrated software engineering framework:
1. Stakeholder NFR-goals - Add features to the RE Design tool to generate goal XML

for automatic simulation input

2. OLTP benchmarks for cloud architectures - Build a local Requirements

Engineering Cloud Benchmarking and Simulation Laboratory. Design local lab

test-bed to benchmark and simulate a hybrid mix of datacenter and cloud. Extend

the Silverlining web site to include benchmark results and open source simulation

models

3. Architecture resource elasticity - Locate the next Cloud GAE/CloudSQL elasticity

constraint above 640 concurrent users by benchmarking the expected new

Google CloudSQL database simultaneous connection limit of 3,200. Find the next

Cloud GAE/Datastore elasticity constraint above 6,000 concurrent users by using

non-UTD Computer Science client network resources

4. Describe a discrete event simulation - Augment the capabilities of the

Simulation/Forecaster GUI to drag-and-drop graphic elements and animation

when creating architecture topology descriptions and simulation execution status

demonstration, respectively. Investigate the addition of a “distance to reality”

fidelity score.

5. Basic software engineering artifacts - Create a local test-bed to compare genetic

algorithm results to benchmarks and simulation results. Add local lab cloud

emulation (to benchmark and collect resource usage metrics) for Google,

Amazon, Azure and OpenStack cloud-provider tests

65

Publications

• Chung, T. Hill, and N. Subramanian. Silverlining: A Cloud Forecaster Using

Benchmarking and Simulation, presented at the 26th Annual IEEE Software

Technology Conference, Long Beach, California, March-April, 2014.

• L. Chung, T. Hill, O. Legunsen, Z. Sun, A. Dsouza and S. Supakkul. A goal-oriented

simulation approach for obtaining good private cloud-based system architectures,

Original Research Article Journal of Systems and Software, Volume 86, Issue 9,

pages 2242-2262, September 2013.

• T. Hill. Software Maintenance and Operations Hybrid Model: An IT Services Industry

Architecture Simulation Model Approach, IEEE Research Challenges in Information

Science (RCIS), 2011 Fifth International Conference, May 2011.

• T. Hill, S. Supakkul, and L. Chung. Run-time monitoring of system performance: A

goal-oriented and system architecture Simulation approach,

Requirements@Run.Time, 2010 First International Workshop, Sydney, Australia,

pages 31-40, 2010.

• S. Supakkul, T. Hill, E. A. Oladimeji, and L. Chung; “Capturing, Organizing, and

Reusing Knowledge of NFRs: An NFR Pattern Approach.” In Proc. 2nd Intl. Workshop

on Managing Requirements Knowledge (MaRK'09) in conjunction with RE'09, Atlanta,

Sept. 1, 2009.

• S. Supakkul, T. Hill, E. A. Oladimeji, and L. Chung; “Security Threat and Vulnerability

Mitigation Patterns: A Case of Credit Card Theft Mitigation.” In Proc. of the 16th

Patterns Languages of Programs, Chicago, August 2009.

• T. Hill, S. Supakkul and L. Chung. Confirming and reconfirming architectural decisions

on scalability: a goal-driven simulation approach, International Workshop on

System/Software Architectures, IWSSA’09, Springer LNCS 5872, 2009.

66

Questions ?

Thanks, Tom

67

Supplemental - Publication

Confirming and Reconfirming Architectural Decisions on Scalability

(IWSSA’09, Springer LNCS 5872, 2009)

Approach: Propose an integration of goal-orientation, which is qualitative

in nature, and simulation, which is quantitative in nature

Challenge: Difficult to analyze if an architectural design incorporates

good decisions or even bad ones

Solution: Use SIG to document NFR scalability goals and sub-goals

Scalability is noted as the primary system goal

Architect decision to

select the Scale up

option is

documented along

with the rational

68

Supplemental - Publication

Run-time monitoring of system performance: A goal-oriented and

system architecture Simulation approach

(Requirements@Run.Time, 2010 First International Workshop, pp. 31-40.

Sydney, Australia, 2010)

Approach: Propose a goal-oriented framework to record goals, and a

system architecture simulation approach to realize and monitor the

run-time performance characteristics of the system

Challenge: Simulation models were constructed and used in design and

simply ignored during run-time

Solution: A simulation model is constructed and experiments analyzed to

consider varying workloads, resource consumptions, and run-time

capacities

Topology of the run-

time system is

duplicated

completely in a

simulation model

The production run-

time infrastructure

(with performance

characteristics and

capacities) is

synchronized with

model

69

Supplemental - Publication
Software Maintenance and Operations Hybrid Model: An IT Services

Industry Architecture Simulation Model Approach

(IEEE Research Challenges in Information Science (RCIS), 2011 Fifth

International Conference, May 2011)
Approach: Propose an architecture simulation model hybrid, built from existing

software development artifacts and operations artifacts, which can endure for

the operational life of a system

Challenge: Software maintenance artifacts and operations artifacts continue to

diverge down two separate paths filled with duplication and unused

information

Solution: A multi-layer simulation model combining goals, process, architecture

1. A layered infrastructure topology

diagram reproduced for input to

simulation

2. New Order transaction workload

and resource usage defined

3.-6 Other transactions defined

7. New Order transaction response

time goal is specified

70

Supplemental - Publication
A goal-oriented simulation approach for obtaining good private

cloud-based system architectures

(Journal of Systems and Software, 86(9): 2242-2262 2013)
Approach: Propose a goal-oriented simulation approach for cloud-based system

design for multiple stakeholders: end user, cloud service customer, provider

Challenge: A lack of methodologies for incorporating stakeholder goals into the

design process for such systems, and for assuring with higher confidence

Solution: Simulations are run against various configurations of the model as a

way of rationally exploring, evaluating and selecting among incrementally

better architectural alternatives

Three [current,

peak, Olympic]

simulation

models shown:

hosts, PE/host,

PE speed,

requests..

Simulation

results:

response time,

throughput..

Simulation results for

each model: annual

cost of revenue, VM

utilization, hypothetical

traffic..

Softgoals (Softgoal

Interdependency

Graph), workflow

and architecture

integrated

graphically via

CloudSim (cloud

simulator)

71

Supplemental - Publication

Google App Engine: Software Benchmark and GAE Simulation

Forecaster Grant - Project Summary

(Google App Engine Research Awards, 11/6/2013)

Approach: Build a TPC-C online transaction processing benchmark in

the Google cloud using Java and Python

Challenge: Comparing the benchmark performance and cost data points

to simulation forecaster results

Solution: A summary of nine project milestones and accompanying

metrics (10/2012-10/2013) reported to show the cloud benchmark

performance and cost data points along with early simulation results

72

Supplemental – Reports/Presentations
Systems of Systems Engineering: A Goal-driven Architecture

Simulation Approach, Quarterly Status Reports and Summaries

(NSF IUCRC Net-Centric Software & Systems Consortium, 2010 – 2014)
Approach: Design a framework to use goals and simulation to help document

complex systems-of-systems architectures

Challenge: SoS failures are “… traceable to excessive complexity, poor

architectural choices, ill-defined processes, non-validated systems

engineering practices or lack of experience in applying valid practices.”

[INCOSE Systems Engineering Vision 2020]

Solution: A framework and tools developed to use goals and simulation to

understand the behavior complex systems-of-systems architectures

Three open source discrete

event simulators used as

alternatives to prove the

simulation model can

confirm Systems of

Systems architecture

performance and cost:

1. CloudSim – Java

2. Omnet++ - C++

3. SimPY - Python

